找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

5T9302PGGI

型号:

5T9302PGGI

品牌:

IDT[ INTEGRATED DEVICE TECHNOLOGY ]

页数:

15 页

PDF大小:

1602 K

PRELIMINARY  
2.5V LVDS, 1:2 CLOCK BUFFER  
TERABUFFER™ II  
IDT5T9302  
General Description  
Features  
The IDT5T9302 2.5V differential clock buffer is a user-selectable  
differential input to two LVDS outputs. The fanout from a  
differential input to two LVDS outputs reduces loading on the  
preceding driver and provides an efficient clock distribution  
network. The IDT5T9302 can act as a translator from a differential  
HSTL, eHSTL, LVEPECL (2.5V), LVPECL (3.3V), CML, or LVDS  
input to LVDS outputs. A single-ended 3.3V / 2.5V LVTTL input  
can also be used to translate to LVDS outputs. The redundant  
input capability allows for an asynchronous change-over from a  
primary clock source to a secondary clock source. Selectable  
reference inputs are controlled by SEL.  
Guaranteed low skew: 5ps (typical)  
Very low duty cycle distortion: 20ps (typical)  
High speed propagation delay: 1.35ns (typical)  
Up to 450MHz operation  
Selectable inputs  
Hot insertable and over-voltage tolerant inputs  
3.3V/2.5V LVTTL, HSTL eHSTL, LVEPECL (2.5V), LVPECL  
(3.3V), CML or LVDS input interface  
Selectable differential inputs to two LVDS outputs  
Power-down mode  
The IDT5T9302 outputs can be asynchronously enabled/disabled.  
When disabled, the outputs will drive to the value selected by the  
GL pin. Multiple power and grounds reduce noise.  
2.5V VDD  
-40°C to 85°C ambient operating temperature  
Available in TSSOP package  
Applications  
Clock distribution  
Pin Assignment  
GND  
PD  
A2  
A2  
1
2
20  
19  
nc  
VDD  
3
4
18 GND  
VDD  
17  
5
6
7
8
9
16 Q2  
15 Q2  
Q1  
Q1  
VDD  
VDD  
14  
13  
12  
11  
GL  
SEL  
A1  
A1  
G
GND 10  
20-Lead TSSOP  
4.4mm x 6.5mm x 1.0mm package body  
G Package  
Top View  
The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization and/or qualification.  
Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.  
IDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
1
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
Block Diagram  
GL  
G
Q1  
OUTPUT  
CONTROL  
Q1  
PD  
A1  
1
A1  
Q2  
Q2  
OUTPUT  
CONTROL  
A2  
0
A2  
SEL  
IIDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
2
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
Table 1. Pin Descriptions  
Name  
Type  
Description  
A[1:2]  
Input  
Input  
Adjustable (1, 4) Clock input. A[1:2] is the "true" side of the differential clock input.  
Complementary clock inputs. A[1:2] is the complementary side of A[1:2]. For  
LVTTL single-ended operation, A[1:2] should be set to the desired toggle  
A[1:2]  
Adjustable (1, 4) voltage for A[1:2]:  
3.3V LVTTL VREF = 1650mV  
2.5V LVTTL VREF = 1250mV  
Gate control for differential outputs Q1, Q1 and Q2, Q2. When G is LOW, the  
differential outputs are active. When G is HIGH, the differential outputs are  
asynchronously driven to the level designated by GL(2). See Table 3A.  
G
Input  
Input  
LVTTL  
LVTTL  
Specifies output disable level. If HIGH, "true" outputs disable HIGH and  
"complementary" outputs disable LOW. If LOW, "true" outputs disable LOW and  
"complementary" outputs disable HIGH. See Table 3A.  
GL  
Q[1:2]  
Q{1:2}  
Output  
Output  
LVDS  
LVDS  
Clock outputs.  
Complementary clock outputs.  
Reference clock select. When LOW, selects A2 and A2. When HIGH, selects A1  
and A1. See Table 3B.  
SEL  
PD  
Input  
Input  
LVTTL  
LVTTL  
Power-down control. Shuts off entire chip. If LOW, the device goes into low  
power mode. Inputs and outputs are disabled. Both "true" and “complementary”  
outputs will pull to VDD. Set HIGH for normal operation.(3)  
VDD  
GND  
nc  
Power  
Power  
Power supply for the device core and inputs.  
Power supply return for all power.  
No connect; recommended to connect to GND.  
NOTES:  
1.  
Inputs are capable of translating the following interface standards:  
Single-ended 3.3V and 2.5V LVTTL levels  
Differential HSTL and eHSTL levels  
Differential LVEPECL (2.5V) and LVPECL (3.3V) levels  
Differential LVDS levels  
Differential CML levels  
2.  
3.  
4.  
Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control  
signals to minimize the possibility of runt pulses or be able to tolerate them in down stream circuitry.  
It is recommended that the outputs be disabled before entering power-down mode. It is also recommended that the outputs remain  
disabled until the device completes power-up after asserting PD.  
The user must take precautions with any differential input interface standard being used in order to prevent instability when there is  
no input signal.  
Table 2. Pin Characteristics (TA = +25°C, F = 1.0MHz))  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
CIN  
Input Capacitance  
3
pF  
NOTE: This parameter is measured at characterization but not tested.  
IIDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
3
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
Function Tables  
Table 3A. Gate Control Output Table  
Control Output  
Outputs  
GL  
0
G
0
1
0
1
Q[1:2]  
Toggling  
LOW  
Q[1:2]  
Toggling  
HIGH  
0
1
Toggling  
HIGH  
Toggling  
LOW  
1
Table 3B. Input Selection Table  
Selection SEL pin  
Inputs  
A2/A2  
A1/A1  
0
1
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are  
stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC  
Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
product reliability.  
Item  
Rating  
Power Supply Voltage, VDD  
Input Voltage, VI  
-0.5V to +3.6V  
-0.5V to +3.6V  
Output Voltage, VO  
Not to exceed 3.6V  
-0.5 to VDD +0.5V  
Storage Temperature, TSTG  
Junction Temperature, TJ  
-65°C to 150°C  
150°C  
Recommended Operating Range  
Symbol  
TA  
Description  
Minimum  
Typical  
+25  
Maximum  
+85  
Units  
°C  
Ambient Operating Temperature  
Internal Power Supply Voltage  
-40  
2.3  
VDD  
2.5  
2.7  
V
IIDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
4
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
DC Electrical Characteristics  
Table 4A. LVDS Power Supply DC Characteristics(1), TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical(2)  
Maximum  
Units  
V
DD = Max.,  
IDDQ  
Quiescent VDD Power Supply Current  
All Input Clocks = LOW(2)  
Outputs enabled  
;
190  
mA  
V
DD = 2.7V;  
ITOT  
IPD  
Total Power VDD Supply Current  
Total Power Down Supply Current  
190  
2
mA  
mA  
FREFERENCE Clock = 450MHz  
PD = LOW  
NOTE 1: These power consumption characteristics are for all the valid input interfaces and cover the worst case conditions.  
NOTE 2: The true input is held LOW and the complementary input is held HIGH.  
Table 4B. LVCMOS/LVTTL DC Characteristics(1), TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
VDD = = 2.7V  
Minimum  
Typical(2)  
Maximum  
Units  
µA  
µA  
V
IIH  
Input High Current  
5
5
IIL  
Input Low Current  
VDD = = 2.7V  
VIK  
VIN  
VIH  
VIL  
VTHI  
Clamp Diode Voltage  
DC Input Voltage  
VDD = 2.3V, IIN = -18mA  
-0.7  
-1.2  
3.6  
-0.3  
1.7  
V
DC Input High Voltage  
DC Input Low Voltage  
DC Input Threshold Crossing Voltage  
V
0.7  
V
VDD/2  
1.65  
V
3.3V LVTTL  
2.5V LVTTL  
V
VREF  
Single-Ended Reference Voltage (3)  
1.25  
V
NOTE 1: See Recommended Operating Range table.  
NOTE 2: Typical values are at VDD = 2.5V, +25°C ambient.  
NOTE 3: For A[1:2] single-ended operation, A[1:2] is tied to a DC reference voltage.  
Table 4C. Differential DC Characteristics(1), TA = -40°C to 85°C  
Symbol  
IIH  
Parameter  
Test Conditions  
VDD = 2.7V  
Minimum  
Typical(2)  
Maximum  
Units  
µA  
µA  
V
Input High Current  
5
5
IIL  
Input Low Current  
VDD = 2.7V  
VIK  
Clamp Diode Voltage  
VDD = 2.3V, IIN = -18mA  
-0.7  
-1.2  
3.6  
VIN  
DC Input Voltage  
-0.3  
0.1  
V
VDIF  
VCM  
DC Differential Voltage(3)  
DC Common Mode Input Voltage  
V
0.05  
VDD  
V
NOTE 1: See Recommended Operating Range table.  
NOTE 2: Typical values are at VDD = 2.5V, +25°C ambient.  
NOTE 3: VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and  
VCP is the "complement" input level. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW  
input. The AC differential voltage must be achieved to guarantee switching to a new state.  
NOTE 4: VCM specifies the maximum allowable range of (VTR + VCP) /2.  
IIDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
5
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
Table 4D. LVDS DC Characteristics(1), TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical(2)  
Maximum  
Units  
Differential Output Voltage for the  
True Binary State  
VOT(+)  
247  
454  
454  
50  
mV  
Differential Output Voltage for the  
False Binary State  
VOT(–)  
VOT  
VOS  
247  
mV  
mV  
V
Change in VOT Between  
Complementary Output States  
Output Common Mode Voltage  
(Offset Voltage)  
1.125  
1.2  
1.375  
50  
Change in VOS Between  
Complementary Output States  
VOS  
mV  
IOS  
Outputs Short Circuit Current  
VOUT+ and VOUT– = 0V  
VOUT+ = VOUT–  
12  
6
24  
12  
mA  
mA  
IOSD  
Differential Outputs Short Circuit Current  
NOTE 1: See Recommended Operating Range table.  
NOTE 2: Typical values are at VDD = 2.5V, +25°C ambient.  
AC Electrical Characteristics  
Table 5A. HSTL Differential Input AC Characteristics, TA = -40°C to 85°C  
Symbol  
VDIF  
VX  
Parameter  
Input Signal Swing(1)  
Differential Input Signal Crossing Point(2)  
Value  
Units  
1
V
mV  
%
750  
50  
DH  
Duty Cycle  
VTHI  
tR / tF  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
Crossing Point  
2
V
V/ns  
NOTE 1.The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE)  
environment. This device meets the VDIF (AC) specification under actual use conditions.  
NOTE 2.A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE)  
environment. This device meets the VX specification under actual use conditions.  
NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
NOTE 4.The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
IIDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
6
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
Table 5B. eHSTL AC Differential Input Characteristics, TA = -40°C to 85°C  
Symbol  
VDIF  
VX  
Parameter  
Input Signal Swing(1)  
Differential Input Signal Crossing Point(2)  
Value  
1
Units  
V
900  
50  
mV  
%
DH  
Duty Cycle  
VTHI  
tR / tF  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
Crossing Point  
2
V
V/ns  
NOTE 1.The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE)  
environment. This device meets the VDIF (AC) specification under actual use conditions.  
NOTE 2.A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE)  
environment. This device meets the VX specification under actual use conditions.  
NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
NOTE 4.The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
Table 5C. LVEPECL (2.5V) and LVPECL (3.3V) Differential Input AC Characteristics, TA = -40°C to 85°C  
Symbol  
Parameter  
Input Signal Swing(1)  
Maximum  
Units  
mV  
mV  
mV  
%
VDIF  
732  
LVEPECL  
LVPECL  
1082  
VX  
Differential Input Cross Point Voltage(2)  
1880  
DH  
Duty Cycle  
50  
VTHI  
tR / tF  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
Crossing Point  
2
V
V/ns  
NOTE 1.The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment  
(ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.  
NOTE 2.A 1082mV LVEPECL (2.5V) and 1880 LVPECL (3.3V) crossing point level is specified to allow consistent, repeatable results in  
an automatic test equipment (ATE) environment. This device meets the VX specification under actual use conditions.  
NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
NOTE 4.The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
IIDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
7
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
Table 5D. LVDS Differential Input AC Characteristics, TA = -40°C to 85°C  
Symbol  
VDIF  
VX  
Parameter  
Input Signal Swing(1)  
Differential Input Cross Point Voltage(2)  
Maximum  
Units  
mV  
V
400  
1.2  
DH  
Duty Cycle  
50  
%
VTHI  
tR / tF  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
Crossing Point  
2
V
V/ns  
NOTE 1.The 400mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment  
(ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.  
NOTE 2.A 1.2V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment.  
This device meets the VX specification under actual use conditions.  
NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
NOTE 4.The input signal edge rate of 2V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
Table 5E. AC Differential Input Characteristics(1), TA = -40°C to 85°C  
Symbol  
VDIF  
VX  
Parameter  
Minimum  
0.1  
Typical  
Maximum  
3.6  
Units  
V
AC Differential Voltage(2)  
Differential Input Cross Point Voltage  
Common Mode Input Voltage Range(3)  
Input Voltage  
0.05  
VDD  
V
VCM  
VIN  
0.05  
VDD  
V
-0.3  
3.6  
V/ns  
NOTE 1.The output will not change state until the inputs have crossed and the minimum differential voltage range defined by VDIF has  
been met or exceeded.  
NOTE 2.VDIF specifies the minimum input voltage (VTR – VCP) required for switching where VTR is the “true” input level and VCP is the  
“complement” input level. The AC differential voltage must be achieved to guarantee switching to a new state.  
NOTE 3.IVCM specified the maximum allowable range of (VTR + VCP) /2.  
IIDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
8
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
Table 5E. AC Characteristics(1,5), TA = -40°C to 85°C  
Symbol  
tsk(o)  
tsk(p)  
tsk(pp)  
tpLH  
Parameter  
Test Conditions  
Minimum  
Typical  
5
Maximum  
Units  
ps  
Same Device Output Pin-to-Pin Skew (2)  
Pulse Skew(3)  
Part-to-Part Skew(4)  
20  
ps  
TBD  
1.35  
1.35  
ps  
Propagation Delay, Low-to-High  
Propagation Delay, High-to-Low  
Frequency Range(6)  
ns  
A Crosspoint to Qn/Qn  
Crosspoint  
tpHL  
ns  
fo  
450  
3.5  
MHz  
Output Gate Enable Crossing  
VTHI-to-Qn/Qn Crosspoint  
tPGE  
ns  
ns  
Output Gate Enable Crossing  
VTHI-to-Qn/Qn Crosspoint Driven to  
Designated Level  
tPGD  
tPWRDN  
tPWRUP  
3.5  
PD Crossing VTHI-to-Qn = VDD, Qn = VDD  
100  
100  
µS  
µS  
Output Gate Disable Crossing VTHI to  
Qn/Qn Driven to Designated Level  
NOTE 1. AC propagation measurements should not be taken within the first 100 cycles of startup.  
NOTE 2. Skew measured between crosspoints of all differential output pairs under identical input and output interfaces, transitions and  
load conditions on any one device.  
NOTE 3. Skew measured is the difference between propagation delay times tpHL and tpLH of any differential output pair under identical  
input and output interfaces, transitions and load conditions on any one device.  
NOTE 4. Skew measured is the magnitude of the difference in propagation times between any single differential output pair of two  
devices, given identical transitions and load conditions at identical VDD levels and temperature.  
NOTE 5. All parameters are tested with a 50% input duty cycle.  
NOTE 6. Guaranteed by design but not production tested.  
IIDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
9
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
Differential AC Timing Waveforms  
Output Propagation and Skew Waveforms  
1/fo  
+ VDIF  
VDIF = 0  
- VDIF  
A[1:2] - A[1:2]  
tPHL  
tPLH  
+ VDIF  
VDIF = 0  
- VDIF  
Qn - Qn  
tSK(O)  
tSK(O)  
+ VDIF  
VDIF = 0  
- VDIF  
Qm - Qm  
NOTE 1: Pulse skew is calculated using the following expression:  
tsk(p) = |tpHL – tpLH|  
Note that the tpHL and tpLH shown above are not valid measurements for this calculation because they are not taken from the same pulse.  
NOTE 2: AC propagation measurements should not be taken within the first 100 cycles of startup.  
Differential Gate Disabled/Enable Showing Runt Pulse Generation  
+ VDIF  
VDIF = 0  
- VDIF  
A[1:2] - A[1:2]  
VIH  
VTHI  
VIL  
GL  
G
tPLH  
VIH  
VTHI  
VIL  
tPGD  
tPGE  
+ VDIF  
VDIF = 0  
- VDIF  
Qn - Qn  
NOTE 1: As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user’s responsibility to time  
the G signal to avoid this problem.  
IIDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
10  
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
Power Down Timing  
+VDIF  
VDIF=0  
-VDIF  
A1 - A1  
+VDIF  
VDIF=0  
-VDIF  
A2 - A2  
VIH  
VTHI  
VIL  
G
VIH  
VTHI  
VIL  
PD  
+VDIF  
VDIF=0  
-VDIF  
Qn - Qn  
NOTE 1: It is recommended that outputs be disabled before entering power-down mode. It is also recommended that the outputs remain  
disabled until the device completes power-up after asserting PD.  
NOTE 2: The Power Down Timing diagram assumes that GL is HIGH.  
NOTE 3: It should be noted that during power-down mode, the outputs are both pulled to VDD. In the Power Down Timing diagram this is  
shown when Qn/Qn goes to VDIF = 0.  
IIDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
11  
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
Test Circuit for Differential Input  
~50  
Transmission Line  
VIN  
VDD/2  
A
A
D.U.T.  
Pulse  
Generator  
~50Ω  
Transmission Line  
VIN  
-VDD/2  
Scope  
50Ω  
50Ω  
Table 6A. Differential Input Test Conditions  
Symbol  
VDD = 2.5V 0.2V  
Unit  
VTHI  
Crossing of A and A  
V
IIDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
12  
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
Test Circuit for DC Outputs and Power Down Tests  
VDD  
A
A
Qn  
Qn  
Pulse  
Generator  
RL  
RL  
D.U.T.  
VOS  
VOD  
Test Circuit for Propagation, Skew, and Gate Enable/Disable Timing  
VDD/2  
SCOPE  
CL  
Z = 50  
A
A
Qn  
Qn  
Pulse  
Generator  
50Ω  
50Ω  
D.U.T.  
Z = 50Ω  
CL  
-VDD/2  
Table 6B. Differential Input Test Conditions  
Symbol  
V
DD = 2.5V 0.2V  
Unit  
pF  
pF  
0(1)  
8(1,2)  
50  
CL  
RL  
NOTE 1: Specifications only apply to “Normal Operations” test condition. The TIA/EIA specification load is for reference only.  
NOTE 2: The scope inputs are assumed to have a 2pF load to ground. TIA/EIA – 644 specifies 5pF between the output pair.  
With CL = 8pF, this gives the test circuit appropriate 5pF equivalent load.  
IIDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
13  
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
Ordering Information  
XX  
X
XXXXX  
IDT  
Package Process  
Device Type  
I
-40 C to +85 C (Industrial)  
PG  
PGG  
Thin Shrink Small Outline Package  
TSSOP - Green  
2.5V LVDS Clock Buffer Terabuffer II  
5T9302  
Table 7. Ordering Information  
Part/Order Number  
5T9302PGI  
5T9302PGI8  
5T9302PGGI  
5T9302PGGI8  
Marking  
Package  
20 Lead TSSOP  
20 Lead TSSOP  
Shipping Packaging  
Tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
IDT5T9302PGI  
IDT5T9302PGI  
IDT5T9302PGGI  
IDT5T9302PGGI  
Tape & Reel  
Tray  
Tape & Reel  
“Lead-Free” 20 Lead TSSOP  
“Lead-Free” 20 Lead TSSOP  
IIDT™ LVDS CLOCK BUFFER TERABUFFER™ II  
14  
IDT5T9302 REV. A APRIL 29, 2008  
IDT5T9302  
2.5V LVDS 1:2 CLOCK BUFFER TERABUFFER™ II  
PRELIMINARY  
Contact Information:  
www.IDT.com  
Corporate Headquarters  
Sales  
Technical Support  
Integrated Device Technology, Inc.  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
+480-763-2056  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
www.IDT.com/go/contactIDT  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
www.IDT.com  
Printed in USA  
厂商 型号 描述 页数 下载

IDT

5T9010BBGI8 [ PLL Based Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), PBGA144, LEAD FREE, PLASTIC, BGA-144 ] 25 页

IDT

5T9050PGI [ Low Skew Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), CMOS, PDSO28, TSSOP-28 ] 7 页

IDT

5T905PGI [ Low Skew Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), CMOS, PDSO28, TSSOP-28 ] 17 页

IDT

5T9070PAGI8 [ Low Skew Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PDSO48, GREEN, TSSOP-48 ] 9 页

IDT

5T9070PAI [ Clock Driver, CMOS, PDSO48 ] 9 页

IDT

5T9070PAI8 [ Clock Driver, CMOS, PDSO48 ] 9 页

IDT

5T907PAI [ Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PDSO48, TSSOP-48 ] 19 页

IDT

5T907PAI8 [ Clock Driver, PDSO48 ] 19 页

IDT

5T9110BBGI8 [ PLL Based Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), PBGA144, GREEN, PLASTIC, BGA-144 ] 23 页

IDT

5T915PAI [ Clock Driver, CMOS, PDSO48 ] 19 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.210151s