找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

PXAS37KBBA

型号:

PXAS37KBBA

品牌:

PHILIPS[ PHILIPS SEMICONDUCTORS ]

页数:

38 页

PDF大小:

312 K

INTEGRATED CIRCUITS  
XA-S3  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D,  
low voltage (2.7V–5.5V), I2C, 2 UARTs,  
16MB address range  
Objective specification  
1998 Oct 06  
Supersedes data of 1998 Aug 21  
IC25 Data Handbook  
Philips  
Semiconductors  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
XA-S3  
2
I C, 2 UARTs, 16MB address range  
GENERAL DESCRIPTION  
Three standard counter/timers with enhanced features. All timers  
The XA-S3 device is a member of Philips Semiconductors’ XA  
(eXtended Architecture) family of high performance 16-bit  
single-chip microcontrollers.  
have a toggle output capability.  
Watchdog timer.  
5-channel 16-bit Programmable Counter Array (PCA).  
The XA-S3 device combines many powerful peripherals on one  
chip. With its high performance A/D converter, timers/counters,  
watchdog, Programmable Counter Array (PCA), I C interface, dual  
2
I C-bus serial I/O port with byte-oriented master and slave  
2
functions.  
UARTs, and multiple general purpose I/O ports, it is suited for  
general multipurpose high performance embedded control functions.  
Two enhanced UARTs with independent baud rates.  
Seven software interrupts.  
Specific features of the XA-S3  
2.7 V to 5.5 V operation.  
Active low reset output pin indicates all reset occurrences  
(external reset, watchdog reset and the RESET instruction). A  
reset source register allows program determination of the cause of  
the most recent reset.  
32K bytes of on-chip EPROM/ROM program memory.  
1024 bytes of on-chip data RAM.  
50 I/O pins, each with 4 programmable output configurations.  
Supports off-chip addressing up to 16 megabytes (24 address  
lines). A clock output reference is added to simplify external bus  
interfacing.  
30 MHz operating frequency at 2.7–5.5V V over commercial  
DD  
operating conditions.  
High performance 8-channel 8-bit A/D converter with automatic  
channel scan and repeated read functions. Completes a  
conversion in 4.46 microseconds at 30 MHz.  
Power saving operating modes: Idle and Power-down. Wake-up  
from power-down via an external interrupt is supported.  
68-pin PLCC and 80-pin PQFP packages.  
ORDERING INFORMATION  
ROMless  
ROM  
EPROM  
PXAS37KBBA  
PXAS37KBBE  
TEMPERATURE RANGE (°C)  
FREQ.  
(MHz)  
DRAWING  
NUMBER  
AND PACKAGE  
PXAS30KBBA  
PXAS30KBBD  
PXAS33KBBA  
PXAS33KBBD  
OTP  
OTP  
0 to +70,  
68-pin Plastic Leaded Chip Carrier  
30  
SOT188-3  
0 to +70,  
30  
SOT315-1  
80-pin Plastic Quad Flat Pack  
2
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
PIN CONFIGURATIONS  
68-pin PLCC package  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
P4.7/A21 10  
P3.0/RxD0 11  
P3.1/TxD0 12  
P3.2/INT0 13  
P3.3/INT1 14  
P3.4/T0 15  
60 P2.1/A13D9  
59 P2.0/A12D8  
58 P0.7/A11D7  
57 P0.6/A10D6  
56 P0.5/A9D5  
55  
54  
V
SS  
V
DD  
P3.5/T1/BUSW 16  
P3.6/WRL 17  
P3.7/RD 18  
53 P0.4/A8D4  
52 P0.3/A7D3  
51 P0.2/A6D2  
50 RST  
CERAMIC AND PLASTIC LEADED CHIP CARRIER  
RSTOUT 19  
V
V
20  
21  
22  
SS  
DD  
PP  
49 CLKOUT  
48 PSEN  
EA/WAIT/V  
P5.0/AD0 23  
P5.1/AD1 24  
P5.2/AD2 25  
P5.3/AD3 26  
47 ALE/PROG  
46 P0.1/A5D1  
45 P0.0/A4D0  
44 P6.1/A23  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
SU00936  
3
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
80-pin LQFP package  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
NC  
P4.7/A21  
1
2
3
4
5
6
7
8
9
60 NC  
59 P2.1/A13D9  
58 P2.0/A12D8  
57 P0.7/A11D7  
56 P0.6/A10D6  
55 P0.5/A9D5  
P3.0/RxD0  
P3.1/TxD0  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
54  
53  
52  
51  
V
V
V
SS  
SS  
DD  
P3.5/T1/BUSW  
P3.6/WRL  
P3.7/RD 10  
RSTOUT 11  
V
DD  
LOW PROFILE PLASTIC QUAD FLAT PACK  
50 P0.4/A8D4  
49 P0.3/A7D3  
48 P0.2/A6D2  
47 RST  
V
V
12  
13  
14  
15  
16  
SS  
SS  
DD  
DD  
V
V
46 CLKOUT  
45 PSEN  
EA/WAIT/V  
PP  
P5.0/AD0 17  
P5.1/AD1 18  
P5.2/AD2 19  
P5.3/AD3 20  
44 ALE/PROG  
43 P0.1/A5D1  
42 P0.0/A4D0  
41 P6.1/A23  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
SU00937  
4
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
LOGIC SYMBOL  
V
V
SS  
DD  
XTAL1  
XTAL2  
ECI  
CEX0  
CEX1  
CEX2  
CEX3  
CEX4  
A20  
AV  
A21  
DD  
AV  
REF+  
REF–  
AV  
AV  
SS  
A/D  
INPUTS  
CLKOUT  
ALE  
PSEN  
SCL  
SDA  
RSTOUT  
RST  
EA/WAIT  
A22  
A23  
WRH/A0  
A1  
A2  
A3  
RxD1  
TxD1  
T2  
T2EX  
RxD0  
TxD0  
INT0  
INT1  
T0  
T1/BUSW  
WRL  
RD  
SU00847A  
5
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
BLOCK DIAGRAM  
XA CPU Core  
Program  
SFR  
bus  
Memory  
Bus  
UART 0  
32K Bytes  
ROM/EPROM  
Data  
Bus  
UART 1  
1024 Bytes  
Static RAM  
2
I C  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Timer 0, 1  
Timer 2  
Watchdog  
Timer  
PCA  
Port 5  
Port 6  
Input Port/  
A/D  
SU00846  
6
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
PIN DESCRIPTIONS  
PIN NUMBER  
MNEMONIC  
TYPE  
NAME AND FUNCTION  
PLCC  
LQFP  
V
SS  
1, 20, 55  
12, 13,  
53, 54,  
69, 70  
I
Ground: 0V reference.  
V
2, 21, 54  
14, 15,  
51, 52,  
71, 72  
I
I
Power Supply: This is the power supply voltage for normal, idle, and power down  
operation.  
DD  
RST  
RSTOUT  
ALE/PROG  
PSEN  
50  
19  
47  
48  
22  
47  
11  
44  
45  
16  
Reset: A low on this pin resets the microcontroller, causing I/O ports and peripherals to  
take on their default states, and the processor to begin execution at the address contained  
in the reset vector.  
O
I/O  
O
I
Reset Output: This pin outputs a low whenever the XA-S3 processor is reset for any  
reason. This includes an external reset via the RST pin, watchdog reset, and the RESET  
instruction.  
Address Latch Enable/Program Pulse: A high output on the ALE pin signals external  
circuitry to latch the address portion of the multiplexed address/data bus. A pulse on ALE  
occurs only when it is needed in order to process a bus cycle.  
Program Store Enable: The read strobe for external program memory. When the  
microcontroller accesses external program memory, PSEN is driven low in order to enable  
memory devices. PSEN is only active when external code accesses are performed.  
EA/WAIT/V  
External Access/Bus Wait: The EA input determines whether the internal program  
memory of the microcontroller is used for code execution. The value on the EA pin is  
latched as the external reset input is released and applies during later execution. When  
latched as a 0, external program memory is used exclusively. When latched as a 1, internal  
program memory will be used up to its limit, and external program memory used above that  
point. After reset is released, this pin takes on the function of bus WAIT input. If WAIT is  
asserted high during an external bus access, that cycle will be extended until WAIT is  
released.  
PP  
XTAL1  
XTAL2  
68  
68  
I
Crystal 1: Input to the inverting amplifier used in the oscillator circuit and input to the  
internal clock generator circuits.  
67  
49  
67  
46  
I
Crystal 2: Output from the oscillator amplifier.  
CLKOUT  
O
Clock Output: This pin outputs a buffered version of the internal CPU clock. The clock  
output may be used in conjunction with the external bus to synchronize WAIT state  
generators, etc. The clock output may be disabled by software.  
AV  
AV  
33  
34  
32  
31  
28, 29  
30, 31  
27  
I
Analog Power Supply: Positive power supply input for the A/D converter.  
Analog Ground.  
DD  
I
SS  
AV  
AV  
I
I
A/D Positive Reference Voltage: High end reference for the A/D converter.  
A/D Negative Reference Voltage: Low end reference for the A/D converter.  
REF+  
REF–  
26  
P0.0 – P0.7  
45, 46,  
51–53,  
56–58  
42, 43,  
48–50,  
55–57  
I/O  
Port 0: Port 0 is an 8-bit I/O port with a user-configurable output type. Port 0 latches have  
1s written to them and are configured in the quasi-bidirectional mode during reset. The  
operation of port 0 pins as inputs and outputs depends upon the port configuration  
selected. Each port pin is configured independently. Refer to the section on I/O port  
configuration and the DC Electrical Characteristics for details.  
When the external program/data bus is used, Port 0 becomes the multiplexed low  
data/instruction byte and address lines 4 through 11.  
7
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
PIN NUMBER  
MNEMONIC  
TYPE  
NAME AND FUNCTION  
PLCC  
LQFP  
35–42  
32–39  
I/O  
Port 1: Port 1 is an 8-bit I/O port with a user-configurable output type. Port 1 latches have  
1s written to them and are configured in the quasi-bidirectional mode during reset. The  
operation of port 1 pins as inputs and outputs depends upon the port configuration  
selected. Each port pin is configured independently. Refer to the section on I/O port  
configuration and the DC Electrical Characteristics for details.  
P1.0 – P1.7  
Port 1 also provides various special functions as described below:  
35  
32  
O
A0/WRH (P1.0)  
Address bit 0 of the external address bus when the eternal data  
bus is configured for an 8-bit width. When the external data bus  
is configured for a 16-bit width, this pin becomes the high byte  
write strobe.  
36  
37  
38  
39  
40  
41  
42  
33  
34  
35  
36  
37  
38  
39  
O
O
O
I
A1 (P1.1):  
Address bit 1 of the external address bus.  
Address bit 2 of the external address bus.  
Address bit 3 of the external address bus.  
Serial port 1 receiver input.  
A2 (P1.2):  
A3 (P1.3):  
RxD1 (P1.4):  
TxD1 (P1.5):  
T2 (P1.6):  
O
I/O  
O
Serial port 1 transmitter output.  
Timer/counter 2 external count input or overflow output.  
Timer/counter 2 reload/capture/direction control.  
T2EX (P1.7):  
P2.0 – P2.7  
59–66  
58, 59,  
61–66  
I/O  
Port 2: Port 2 is an 8-bit I/O port with a user-configurable output type. Port 2 latches have  
1s written to them and are configured in the quasi-bidirectional mode during reset. The  
operation of port 2 pins as inputs and outputs depends upon the port configuration  
selected. Each port pin is configured independently. Refer to the section on I/O port  
configuration and the DC Electrical Characteristics for details.  
When the external program/data bus is used in 16-bit mode, Port 2 becomes the  
multiplexed high data/instruction byte and address lines 12 through 19. When the external  
data/address bus is used in 8-bit mode, the number of address lines that appear on Port 2  
is user programmable in groups of 4 bits.  
11–18  
3–10  
I/O  
Port 3: Port 3 is an 8-bit I/O port with a user-configurable output type. Port 3 latches have  
1s written to them and are configured in the quasi-bidirectional mode during reset. The  
operation of port 3 pins as inputs and outputs depends upon the port configuration  
selected. Each port pin is configured independently. Refer to the section on I/O port  
configuration and the DC Electrical Characteristics for details.  
P3.0 – P3.7  
Port 3 also provides the various special functions as described below:  
11  
12  
13  
14  
15  
16  
3
4
5
6
7
8
I
O
I
RxD0 (P3.0):  
TxD0 (P3.1):  
INT0 (P3.2):  
INT1 (P3.3):  
T0 (P3.4):  
Receiver input for serial port 0.  
Transmitter output for serial port 0.  
External interrupt 0 input.  
I
External interrupt 1 input.  
I/O  
I/O  
Timer/counter 0 external count input or overflow output.  
T1 / BUSW (P3.5):  
Timer/counter 1 external count input or overflow output. The  
value on this pin is latched as an external chip reset is  
completed and defines the default external data bus width.  
17  
18  
9
O
O
WRL (P3.6):  
RD (P3.7):  
External data memory low byte write strobe.  
External data memory read strobe.  
10  
3–10  
73–79, 2  
I/O  
Port 4: Port 4 is an 8-bit I/O port with a user-configurable output type. Port 4 latches have  
1s written to them and are configured in the quasi-bidirectional mode during reset. The  
operation of Port 4 pins as inputs and outputs depends upon the port configuration  
selected. Each port pin is configured independently. Refer to the section on I/O port  
configuration and the DC Electrical Characteristics for details.  
P4.0 – P4.7  
Port 4 also provides various special functions as described below:  
3
4
73  
74  
75  
76  
77  
78  
79  
2
I
ECI (P4.0):  
PCA External clock input.  
I/O  
I/O  
I/O  
I/O  
I/O  
O
CEX0 (P4.1):  
CEX1 (P4.2):  
CEX2 (P4.3):  
CEX3 (P4.4):  
CEX4 (P4.5):  
A20 (P4.6):  
A21 (P4.7):  
Capture/compare external I/O for PCA module 0.  
Capture/compare external I/O for PCA module 1.  
Capture/compare external I/O for PCA module 2.  
Capture/compare external I/O for PCA module 3.  
Capture/compare external I/O for PCA module 4.  
Address bit 20 of the external address bus.  
Address bit 21 of the external address bus.  
5
6
7
8
9
10  
O
8
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
PIN NUMBER  
MNEMONIC  
TYPE  
NAME AND FUNCTION  
PLCC  
LQFP  
23–30  
17–20,  
22–25  
I/O  
Port 5: Port 5 is an 8-bit I/O port with a user-configurable output type. Port 5 latches have  
1s written to them and are configured in the quasi-bidirectional mode during reset. The  
operation of Port 5 pins as inputs and outputs depends upon the port configuration  
selected. Each port pin is configured independently. Refer to the section on I/O port  
configuration and the DC Electrical Characteristics for details.  
P5.0 – P5.7  
Port 5 also provides various special functions as described below. Port 5 pins used as A/D  
inputs must be configured by the user to the high impedance mode.  
23  
24  
25  
26  
27  
28  
29  
30  
17  
18  
19  
20  
22  
23  
24  
25  
I
AD0 (P5.0):  
A/D channel 0 input.  
A/D channel 1 input.  
A/D channel 2 input.  
A/D channel 3 input.  
A/D channel 4 input.  
A/D channel 5 input.  
I
AD1 (P5.1):  
I
AD2 (P5.2):  
I
I
AD3 (P5.3):  
AD4 (P5.4):  
I
AD5 (P5.5):  
2
I/O  
I/O  
AD6/SCL (P5.6):  
AD7/SDA (P5.7):  
A/D channel 6 input. I C serial clock input/output.  
2
A/D channel 7 input. I C serial data input/output.  
43, 44  
40, 41  
I/O  
Port 6: Port 6 is a 2-bit I/O port with a user-configurable output type. Port 6 latches have  
1s written to them and are configured in the quasi-bidirectional mode during reset. The  
operation of Port 6 pins as inputs and outputs depends upon the port configuration  
selected. Each port pin is configured independently. Refer to the section on I/O port  
configuration and the DC Electrical Characteristics for details.  
P6.0 – P6.7  
Port 6 also provides special functions as described below:  
43  
44  
40  
41  
O
O
A22 (P6.0):  
A23 (P6.1):  
Address bit 22 of the external address bus.  
Address bit 23 of the external address bus.  
Table 1. Special Function Registers  
BIT FUNCTIONS AND ADDRESSES  
Reset  
Value  
SFR  
Address  
NAME  
DESCRIPTION  
MSB  
3F7  
LSB  
3F6  
3F5  
3F4  
3F3  
3F2  
ADMOD  
3FA  
3F1  
3F0  
ADCON#* A/D control register  
43E  
ADSST ADINT 00h  
3F9 3F8  
3FF  
3FE  
3FD  
3FC  
3FB  
ADCS#*  
ADCFG#  
A/D channel select register  
A/D timing configuration  
43F  
4B9  
4B0  
ADCS7 ADCS6 ADCS5 ADCS4 ADCS3 ADCS2 ADCS1 ADCS0 00h  
A/D Timing Configuration  
0Fh  
xx  
ADRSH0# A/D high byte result,  
channel 0  
ADRSH1# A/D high byte result,  
channel 1  
4B1  
4B2  
4B3  
4B4  
4B5  
4B6  
4B7  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
ADRSH2# A/D high byte result,  
channel 2  
ADRSH3# A/D high byte result,  
channel 3  
ADRSH4# A/D high byte result,  
channel 4  
ADRSH5# A/D high byte result,  
channel 5  
ADRSH6# A/D high byte result,  
channel 6  
ADRSH7# A/D high byte result,  
channel 7  
BCR#  
BTRH  
Bus configuration register  
46A  
469  
CLKD  
DWA1  
WAITD BUSD  
BC2  
DR0  
BC1  
BC0  
Note 1  
Bus timing register high  
byte  
DW1  
DW0  
DWA0  
DR1  
DRA1  
DRA0 FFh  
BTRL  
Bus timing register low byte  
468  
WM1  
WM0  
9
ALEW  
CR1  
CR0  
CRA1  
CRA0 EFh  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
BIT FUNCTIONS AND ADDRESSES  
Reset  
Value  
SFR  
Address  
NAME  
DESCRIPTION  
MSB  
2D7  
CF  
LSB  
2D6  
CR  
2D5  
2D4  
CCF4  
2D3  
CCF3  
2D2  
2D1  
2D0  
CCON#*  
CMOD#  
CH#  
PCA counter control  
PCA mode control  
41A  
490  
48B  
48A  
491  
492  
493  
494  
495  
497  
CCF2  
CPS1  
CCF1  
CPS0  
CCF0 00h  
CIDL  
WDTE  
ECF  
00h  
00h  
00h  
PCA counter high byte  
PCA counter low byte  
CL#  
CCAPM0# PCA module 0 mode  
CCAPM1# PCA module 1 mode  
CCAPM2# PCA module 2 mode  
CCAPM3# PCA module 3 mode  
CCAPM4# PCA module 4 mode  
ECOM  
ECOM  
ECOM  
ECOM  
ECOM  
CAPP  
CAPP  
CAPP  
CAPP  
CAPP  
CAPN  
CAPN  
CAPN  
CAPN  
CAPN  
MAT  
MAT  
MAT  
MAT  
MAT  
TOG  
TOG  
TOG  
TOG  
TOG  
PWM  
PWM  
PWM  
PWM  
PWM  
ECCF 00h  
ECCF 00h  
ECCF 00h  
ECCF 00h  
ECCF 00h  
xx  
CCAP0H# PCA module 0 capture  
high byte  
CCAP1H# PCA module 1 capture  
high byte  
499  
49B  
49D  
49F  
496  
498  
49A  
49C  
49E  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
xx  
CCAP2H# PCA module 2 capture  
high byte  
CCAP3H# PCA module 3 capture  
high byte  
CCAP4H# PCA module 4 capture  
high byte  
CCAP0L# PCA module 0 capture  
low byte  
CCAP1L# PCA module 1 capture  
low byte  
CCAP2L# PCA module 2 capture  
low byte  
CCAP3L# PCA module 3 capture  
low byte  
CCAP4L# PCA module 4 capture  
low byte  
CS  
DS  
ES  
Code segment  
Data segment  
Extra segment  
443  
441  
442  
00h  
00h  
00h  
367  
366  
365  
364  
363  
SI  
362  
AA  
0
361  
CR1  
0
360  
2
I2CON#*  
I2STAT#  
I2DAT#  
I C control register  
42C  
46C  
46D  
46E  
CR2  
ENA  
STA  
STO  
CR0  
0
00h  
F8h  
xx  
2
2
I C status register  
I C Status Code/Vector  
2
I C data register  
2
2
I2ADDR#  
I C address register  
I C Slave Address  
GC  
338  
00h  
33F  
33E  
33D  
33C  
33B  
ETI1  
333  
33A  
ERI1  
332  
339  
ETI0  
331  
IEH*  
Interrupt enable high byte  
Interrupt enable low byte  
427  
426  
ERI0  
330  
00h  
00h  
337  
EA  
377  
336  
EAD  
376  
335  
EPC  
375  
EI2  
334  
ET2  
374  
EC4  
IEL#*  
ET1  
373  
EX1  
372  
ET0  
371  
EX0  
370  
IELB#*  
IPA0  
Interrupt enable B low byte  
Interrupt priority A0  
Interrupt priority A1  
Interrupt priority A2  
Interrupt priority A3  
Interrupt priority A4  
42E  
4A0  
4A1  
4A2  
4A3  
4A4  
EC3  
EC2  
EC1  
EC0  
00h  
00h  
00h  
00h  
00h  
00h  
PT0  
PT1  
PPC  
PX0  
PX1  
PT2  
IPA1  
IPA2#  
IPA3#  
IPA4  
PAD  
PRI0  
PTI0  
10  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
BIT FUNCTIONS AND ADDRESSES  
Reset  
Value  
SFR  
Address  
NAME  
IPA5  
DESCRIPTION  
MSB  
LSB  
Interrupt priority A5  
Interrupt priority B0  
Interrupt priority B1  
Interrupt priority B2  
4A5  
4A8  
4A9  
4AA  
PTI1  
PC1  
PC3  
PI2  
PRI1  
PC0  
PC2  
PC4  
00h  
00h  
00h  
00h  
IPB0#  
IPB1#  
IPB2#  
387  
A11D7  
38F  
386  
385  
A9D5  
38D  
384  
A8D4  
38C  
383  
A7D3  
38B  
A3  
382  
381  
380  
P0*  
Port 0  
Port 1  
Port 2  
Port 3  
Port 4  
Port 5  
Port 6  
430  
431  
432  
433  
434  
435  
436  
A10D6  
38E  
T2  
A6D2  
38A  
A2  
A5D1  
389  
A1  
A4D0 FFh  
388  
A0/WRH  
390  
P1*  
T2EX  
397  
TxD1  
395  
RxD1  
394  
FFh  
396  
393  
392  
391  
A17D13 A16D12 A15D11 A14D10  
P2*  
A19D15 A18D14  
A13D9 A12D8 FFh  
39F  
RD  
39E  
WRL  
3A6  
A20  
3AE  
39D  
T1  
39C  
T0  
39B  
INT1  
3A3  
39A  
INT0  
3A2  
399  
TxD0  
3A1  
398  
P3*  
RxD0 FFh  
3A0  
3A7  
A21  
3AF  
3A5  
CEX4  
3AD  
AD5  
3A4  
CEX3  
3AC  
AD4  
P4#*  
P5#*  
P6#*  
CEX2  
3AB  
CEX1  
3AA  
CEX0  
3A9  
ECI  
3A8  
AD0  
3B0  
A22  
FFh  
FFh  
FFh  
AD7/SDA AD6/SCL  
AD3  
AD2  
AD1  
3B1  
A23  
P0CFGA  
P1CFGA  
P2CFGA  
P3CFGA  
Port 0 configuration A  
Port 1 configuration A  
Port 2 configuration A  
Port 3 configuration A  
470  
471  
472  
473  
474  
475  
476  
4F0  
4F1  
4F2  
4F3  
4F4  
4F5  
4F6  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
Note 5  
P4CFGA# Port 4 configuration A  
P5CFGA# Port 5 configuration A  
P6CFGA# Port 6 configuration A  
P0CFGB  
P1CFGB  
P2CFGB  
P3CFGB  
Port 0 configuration B  
Port 1 configuration B  
Port 2 configuration B  
Port 3 configuration B  
P4CFGB# Port 4 configuration B  
P5CFGB# Port 5 configuration B  
P6CFGB# Port 6 configuration B  
227  
226  
225  
224  
223  
222  
221  
PD  
220  
IDL  
208  
IM0  
PCON*  
PSWH*  
Power control register  
404  
401  
00h  
20F  
SM  
20E  
TM  
20D  
RS1  
20C  
RS0  
20B  
IM3  
20A  
IM2  
209  
IM1  
Program status word  
(high byte)  
Note 2  
207  
C
206  
AC  
205  
204  
203  
202  
V
201  
N
200  
Z
PSWL*  
Program status word  
(low byte)  
400  
402  
Note 2  
Note 3  
217  
C
216  
AC  
215  
F0  
214  
213  
212  
V
211  
F1  
210  
P
PSW51*  
80C51 compatible PSW  
RS1  
RS0  
11  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
BIT FUNCTIONS AND ADDRESSES  
Reset  
Value  
SFR  
Address  
NAME  
DESCRIPTION  
MSB  
LSB  
R_CMD  
RSTSRC# Reset source register  
463  
R_WD  
R_EXT Note 7  
RTH0  
RTH1  
RTL0  
RTL1  
Timer 0 reload register,  
high byte  
455  
457  
454  
456  
00h  
00h  
Timer 1 reload register,  
high byte  
Timer 0 reload register,  
low byte  
00h  
Timer 1 reload register,  
low byte  
00h  
307  
SM0_0  
30F  
306  
305  
304  
303  
302  
301  
TI_0  
309  
300  
S0CON*  
Serial port 0 control register  
420  
421  
SM1_0 SM2_0 REN_0 TB8_0 RB8_0  
RI_0  
308  
00h  
00h  
30E  
30D  
30C  
30B  
FE0  
30A  
BR0  
STINT0  
S0STAT#* Serial port 0 extended  
status  
ERR0  
OE0  
S0BUF  
Serial port 0 data buffer  
register  
460  
461  
462  
xx  
S0ADDR  
S0ADEN  
Serial port 0 address  
register  
00h  
00h  
Serial port 0 address  
enable  
327  
326  
325  
324  
323  
322  
321  
320  
S1CON*  
Serial port 1 control  
register  
424  
SM0_1  
SM1_1 SM2_1 REN_1 TB8_1 RB8_1  
TI_1  
RI_1  
00H  
32F  
32E  
32D  
32C  
32B  
FE1  
32A  
BR1  
329  
328  
STINT1  
S1STAT#* Serial port 1 extended  
status  
425  
464  
465  
466  
ERR1  
OE1  
00h  
xx  
S1BUF  
Serial port 1 data buffer  
register  
S1ADDR  
S1ADEN  
Serial port 1 address  
register  
00h  
00h  
Serial port 1 address  
enable  
SCR  
System configuration  
register  
440  
PT1  
21B  
PT0  
CM  
219  
PZ  
00h  
21F  
21E  
21D  
21C  
21A  
218  
R5SEG R4SEG R3SEG  
R1SEG R0SEG  
SSEL*  
SWE  
Segment selection register  
Software interrupt enable  
Software interrupt request  
Timer 2 control register  
Timer 2 mode control  
403  
47A  
42A  
418  
419  
ESWEN R6SEG  
R2SEG  
00h  
SWE7  
356  
SWE6  
355  
SWE5  
354  
SWE4  
353  
SWE3  
352  
SWE2  
351  
SWE1 00h  
350  
357  
SWR*  
SWR7  
2C6  
SWR6  
2C5  
SWR5  
2C4  
SWR4  
2C3  
SWR3  
2C2  
TR2  
2CA  
SWR2  
2C1  
SWR1 00h  
2C0  
2C7  
TF2  
2CF  
CP/RL2  
2C8  
T2CON*  
T2MOD*  
EXF2  
2CE  
RCLK0 TCLK0 EXEN2  
C/T2  
2C9  
00h  
2CD  
2CC  
2CB  
RCLK1 TCLK1  
T2OE  
DCEN 00h  
TH2  
Timer 2 high byte  
459  
458  
45B  
45A  
00h  
00h  
00h  
00h  
TL2  
Timer 2 low byte  
T2CAPH  
T2CAPL  
Timer 2 capture, high byte  
Timer 2 capture, low byte  
287  
TF1  
286  
285  
TF0  
284  
283  
IE1  
282  
IT1  
281  
IE0  
280  
TCON*  
Timer 0 and 1 control  
register  
410  
TR1  
TR0  
IT0  
00h  
12  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
BIT FUNCTIONS AND ADDRESSES  
Reset  
Value  
SFR  
Address  
NAME  
TH0  
DESCRIPTION  
Timer 0 high byte  
MSB  
LSB  
451  
453  
450  
452  
00h  
00h  
00h  
00h  
TH1  
TL0  
TL1  
Timer 1 high byte  
Timer 0 low byte  
Timer 1 low byte  
TMOD  
Timer 0 and 1 mode control  
45C  
GATE  
28F  
C/T  
28E  
M1  
28D  
M0  
28C  
GATE  
28B  
C/T  
28A  
M1  
289  
M0  
00h  
288  
TSTAT*  
Timer 0 and 1 extended  
status  
411  
T1OE  
T0OE 00h  
2FF  
2FE  
2FD  
2FC  
2FB  
2FA  
2F9  
2F8  
WDRUN WDTOF  
WDCON*  
Watchdog control register  
41F  
PEW2  
PRE1  
PRE0  
Note 6  
WDL  
Watchdog timer reload  
Watchdog feed 1  
45F  
45D  
45E  
00h  
xx  
WFEED1  
WFEED2  
Watchdog feed 2  
xx  
NOTES:  
*
#
SFRs are bit addressable.  
SFRs are modified from or added to XA-G3 SFRs.  
1. At reset, the BCR is loaded with the binary value 00000a11, where “a’ is the value on the BUSW pin. This defaults the address bus size to  
24 bits.  
2. SFR is loaded from the reset vector.  
3. All bits except F1, F0, and P are loaded from the reset vector. Those bits are all 0.  
4. Unimplemented bits in SFRs are X (unknown) at all times. Ones should not be written to these bits since they may be used for other  
purposes in future XA derivatives. The reset value shown for these bits is 0.  
5. Port configurations default to quasi-bidirectional when the XA begins execution from internal code memory after reset, based on the  
condition found on the EA pin. Thus, all PnCFGA registers will contain FF, and PnCFGB register will contain 00 when the XA begins  
execution using internal code memory. When the XA begins execution using external code memory, the default configuration for pins that  
are associated with the external bus will be push-pull. The PnCFGA and PnCFGB register contents will reflect this difference.  
6. The WDCON reset value is E6 for a Watchdog reset, E4 for all other reset causes.  
7. The RSTSRC register reflects the cause of the last XA-S3 reset. One bit will be set to 1, the others will be cleared to 0.  
8. The XA guards writes to certain bits (typically interrupt flags) that may be altered directly by a peripheral function. This prevents loss of an  
interrupt or other status if a bit was written directly by a peripheral action during the time between the read and write portions of an  
instruction that performs a read-modify-write operation. Examples of such instructions are:  
and  
clr  
s0con,#$fb  
tr0  
setb  
ti_0  
XA-S3 SFR bits that are guarded in this manner are: ADINT (in ADCON); CF, CCF4, CCF3, CCF2, CCF1, and CCF0 (in CCON); SI (in  
I2CON); TI_0 and RI_0 (in S0CON); TI_1 and RI_1 (in S1CON); FE0, BR0, and OE0 (in S0STAT); FE1, BR1, and OE1 (in S1STAT); TF2 (in  
T2CON); TF1, TF0, IE1, and IE0 (in TCON); and WDTOF (in WDCON).  
9. The XA-S3 implements an 8-bit SFR bus, as stated in Chapter 8 of the XA User Guide. All SFR accesses must be 8-bit operations. Attempts  
to write 16 bits to an SFR will actually write only the lower 8 bits. Sixteen bit SFR reads will return undefined data in the upper byte.  
13  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
bits in the ADCS register will be converted once. The ADINT flag is  
set when the last channel is converted. In the continuous scan  
mode, the A/D converter continuously converts all A/D channels  
selected by bits in the ADCS register. The ADINT flag is set when all  
channels have been converted once.  
FUNCTIONAL DESCRIPTION  
Details of XA-S3 functions will be described in the following  
sections.  
Analog to Digital converter  
The XA-S3 has an 8-channel, 8-bit A/D converter with 8 sets of  
result registers, single scan and multiple scan operating modes. The  
The A/D converter can generate an interrupt when the ADINT flag is  
set. This will occur if the A/D interrupt is enabled (via the EAD bit in  
IEL), the interrupt system is enabled (via the EA bit in IEL), and the  
A/D interrupt priority (specified in IPA3 bits 3 to 0) is higher than the  
currently running code (PSW bits IM3 through IM0) and any other  
pending interrupt. ADINT must be cleared by software.  
A/D input range is limited to 0 to AV (3.3V max.). The A/D inputs  
DD  
are on Port 5. Analog Power and Ground as well as AV  
and  
REF+  
AV  
must be supplied in order for the A/D converter to be used.  
REF–  
Prior to enabling the A/D converter or driving analog signals into the  
A/D inputs, the port configurations for the pins being used as A/D  
inputs must be set to the “off” (high impedance, input only) mode.  
A/D Timing Configuration  
The A/D sampling and conversion timing may be optimized for the  
particular oscillator frequency and input drive characteristics of the  
application. Because A/D operation is mostly dependent on real-time  
effects (charging time of sampling capacitors, settling time of the  
comparator, etc.), A/D conversion times are not necessarily much  
longer at slower clock frequencies. The A/D timing is controlled by  
the ADCFG register, as shown in Figure 3 and Table 2.  
A/D timing can be adapted to the application clock frequency in  
order to provide the fastest possible conversion.  
A/D converter operation is controlled through the ADCON (A/D  
Control) register, see Figure 1. Bits in ADCON start and stop the  
A/D, flag conversion completion, and select the converter operating  
modes.  
The primary effect of ADCFG settings is to adjust the A/D sample  
and hold time to be relatively constant over various clock  
frequencies. Two settings (value 6 and B) are provided to allow fast  
conversions with a lower external source driving the A/D inputs.  
These settings provide double the sample time at the same  
frequency. Of course, settings intended for lower frequencies may  
also be used at higher frequencies in order to increase the A/D  
sampling time, but this method has the side effect of significantly  
increasing A/D conversion times.  
A/D Conversion Modes  
The A/D converter supports a single scan mode and a continuous  
scan mode. In either mode, one or more A/D channels may be  
converted. The ADCS register determines which channels are  
converted. If the corresponding bit in the ADCS register is set, that  
channel is selected for conversions, otherwise that channel is  
skipped. The ADCS register is detailed in Figure 2.  
For any A/D conversion, the results are stored in ADRSHn,  
corresponding to the A/D channel just converted.  
A/D conversions are begun by setting the A/D Start and STatus bit in  
ADCON. In the single scan mode, all of the channels selected by  
ADCON  
Address:43Eh  
MSB  
LSB  
Bit Addressable  
Reset Value: 00h  
ADMOD ADSST ADINT  
BIT  
SYMBOL  
FUNCTION  
ADCON.7  
ADCON.6  
ADCON.5  
ADCON.4  
ADCON.3  
ADCON.2  
ADMOD  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
A/D mode select.  
1 = continuous scan of selected inputs after a start of the A/D.  
0 = single scan of selected inputs after a start of the A/D.  
ADCON.1  
ADCON.0  
ADSST  
ADINT  
A/D start and status. Setting this bit by software starts the A/D conversion of the selected A/D  
inputs. ADSST remains set as long as the A/D is in operation. In continuous conversion mode,  
ADSST will remain set unless the A/D is stopped by software. While ADSST is set, new start  
commands are ignored. An A/D conversion is progress may be aborted by software clearing  
ADSST.  
A/D conversion complete/interrupt flag. This flag is set when all selected A/D channels are  
converted in either the single scan or continuous scan modes. Must be cleared by software.  
SU00938A  
Figure 1. A/D Control Register (ADCON)  
14  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
ADCS  
Address:43Fh  
MSB  
LSB  
Bit Addressable  
Reset Value: 00h  
ADCS7 ADCS6 ADCS5 ADCS4 ADCS3 ADCS2 ADCS1 ADCS0  
BIT  
SYMBOL  
ADCS7  
ADCS6  
ADCS5  
ADCS4  
ADCS3  
ADCS2  
ADCS1  
ADCS0  
FUNCTION  
ADCS.7  
ADCS.6  
ADCS.5  
ADCS.4  
ADCS.3  
ADCS.2  
ADCS.1  
ADCS.0  
A/D channel 7 select bit.  
A/D channel 6 select bit.  
A/D channel 5 select bit.  
A/D channel 4 select bit.  
A/D channel 3 select bit.  
A/D channel 2 select bit.  
A/D channel 1 select bit.  
A/D channel 0 select bit.  
SU00939  
Figure 2. A/D Channel Select Register (ADCS)  
ADCFG  
Address:4B9h  
MSB  
LSB  
Not bit Addressable  
Reset Value: 00h  
A/D Timing Configuration  
BIT  
SYMBOL  
FUNCTION  
ADCFG.7  
ADCFG.6  
ADCFG.5  
ADCFG.4  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
A/D timing configuration (see text and table).  
ADCFG.3–0 ADCFG  
SU00940  
Figure 3. A/D Timing Configuration Register (ADCFG)  
Table 2. A/D Timing Configuration  
Conversion Time  
µsec at max. Osc.  
Max. Oscillator  
ADCFG.3–0  
Sampling Time  
(Osc. Clocks)  
Frequency (MHz)  
Osc. Clocks  
70  
0h (0000)  
1h (0001)  
2h (0010)  
3h (0011)  
4h (0100)  
5h (0101)  
6.66  
10  
11.11  
7.8  
4
78  
6
11.11  
13.33  
16.66  
20  
82  
7.38  
7.35  
6.12  
5.3  
8
98  
8
102  
106  
118  
10  
12  
24  
14  
14  
16  
18  
32  
20  
20  
22  
24  
1
6h (0110)  
7h (0111)  
8h (1000)  
9h (1001)  
Ah (1010)  
20  
5.9  
22.2  
23.3  
26.6  
30  
102  
126  
130  
134  
148  
138  
152  
172  
176  
4.95  
5.4  
4.88  
4.46  
4.93  
4.31  
4.56  
4.69  
4.4  
1
Bh (1011)  
Ch (1100)  
Dh (1101)  
Eh (1110)  
Fh (1111)  
30  
32  
33.3  
36.6  
40  
NOTE:  
1. These settings provide additional A/D input sampling time, in order to allow accurate readings with a higher external source impedance.  
15  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
A/D Inputs  
A/D timing configurations indicated in Table 1 allow for full A/D  
In order to obtain accurate measurements with the A/D Converter,  
the source drive must be sufficient to adequately charge the  
sampling capacitor during the sampling time. Figure 4 shows the  
equivalent resistance and capacitance related to the A/D inputs.  
accuracy (according to the A/D specifications) assuming a source  
resistance of less than or equal to 20k. Larger source resistances  
may be accommodated by increasing the sampling time with a  
different A/D timing configuration.  
Sm  
Sm  
Rm  
Rm  
N+1  
N+1  
AD  
N+1  
N
N
TO COMPARATOR  
AD  
N
+
Multiplexer  
R
S
C
C
C
S
V
ANALOG  
INPUT  
R
C
C
R
(multiplexer resistance)  
(pin capacitance)  
=
=
=
=
3 kmaximum  
10 pF maximum  
2 pF maximum  
m
S
C
S
(sampling capacitor)  
(source resistance)  
Recommended less than 20kfor full specified accuracy. This allows time for the sampling  
capacitor (C ) to fully charge while the multiplexer switch is closed. Please note that sampling  
C
causes the analog input to present a varying load to the pin.  
SU00948  
Figure 4. A/D Input: Equivalent Circuit  
16  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
I2CON  
Address:42Ch  
MSB  
CR2  
LSB  
CR0  
Bit Addressable  
Reset Value: 00h  
ENA  
STA  
STO  
SI  
AA  
CR1  
BIT  
SYMBOL  
CR2  
ENA  
FUNCTION  
2
I2CON.7  
I2CON.6  
I2CON.5  
I C Rate Control, with CR1 and CR0. See text and table.  
2
2
Enable I C port. When ENA = 1, the I C port is enabled.  
2
STA  
Start flag. Setting STA to 1 causes the I C interface to attempt to gain mastership of the bus by  
generating a Start condition.  
Stop flag. Setting STO to 1 causes the I C interface to attempt to generate a Stop condition.  
Serial Interrupt. SI is set by the I C hardware when a new I C state is entered, indicating that  
software needs to respond. SI causes an I C interrupt if enabled and of sufficient priority.  
2
I2CON.4  
I2CON.3  
STO  
SI  
2
2
2
2
I2CON.2  
AA  
Assert Acknowledge. Setting AA to 1 causes the I C hardware to automatically generate  
acknowledge pulses for various conditions (see text).  
2
I2CON.1  
I2CON.0  
CR1  
CR0  
I C Rate Control, with CR2 and CR0. See text and table.  
I C Rate Control, with CR2 and CR1. See text and table.  
2
SU00941  
2
Figure 5. I C Control Register (I2CON)  
2
2
If STA is set while the I C interface is already in a master mode and  
one or more bytes are transmitted or received, the hardware  
transmits a repeated START condition. STA may be set at any time.  
I C Interface  
2
The I C interface on the XA-S3 is identical to the standard byte-style  
2
I C interface found on devices such as the 8xC552 except for the  
2
2
2
STA may also be set when the I C interface is an addressed slave.  
rate selection. The I C interface conforms to the 100 kHz I C  
specification, but may be used at rates up to 400 kHz  
(non-conforming).  
STA = 0: When the STA bit is reset, no START condition or  
repeated START condition will be generated.  
2
Important: Before the I C interface may be used, the port pins  
P5.6 and 5.7, which correspond to the I C functions SCL and SDA  
respectively, must be set to the open drain mode.  
STO, the STOP flag  
STO = 1: When the STO bit is set while the I C interface is in a  
master mode, a STOP condition is transmitted to the I C bus. When  
2
2
2
2
The processor interfaces to the I C logic via the following four  
special function registers: I2CON (I C control register), I2STA (I C  
the STOP condition is detected on the bus, the hardware clears the  
STO flag. In a slave mode, the STO flag may be set to recover from  
an error condition. In this case, no STOP condition is transmitted to  
2
2
2
2
status register), I2DAT (I C data register), and I2ADR (I C slave  
2
2
2
address register). The I C control logic interfaces to the external I C  
bus via two port 5 pins: P5.6/SCL (serial clock line) and P5.7/SDA  
(serial data line).  
the I C bus. However, the hardware behaves as if a STOP condition  
has been received and switches to the defined “not addressed”  
slave receiver mode. The STO flag is automatically cleared by  
hardware.  
The Control Register, I2CON  
This register is shown in Figure 5. Two bits are affected by the I C  
2
If the STA and STO bits are both set, then a STOP condition is  
2
transmitted to the I C bus if the interface is in a master mode (in a  
hardware: the SI bit is set when a serial interrupt is requested, and  
the STO bit is cleared when a STOP condition is present on the I C  
bus. The STO bit is also cleared when ENA = “0”.  
2
slave mode, the hardware generates an internal STOP condition  
which is not transmitted). The I C interface then transmits a START  
2
condition.  
2
ENA, the I C Enable Bit  
STO = 0: When the STO bit is reset, no STOP condition will be  
generated.  
ENA = 0: When ENA is “0”, the SDA and SCL outputs are not  
driven. SDA and SCL input signals are ignored, SIO1 is in the “not  
addressed” slave state, and the STO bit in I2CON is forced to “0”.  
No other bits are affected. P5.6 and P5.7 may be used as open  
drain I/O ports.  
SI, the Serial Interrupt flag  
SI = 1: When the SI flag is set, and the EA (interrupt system  
2
2
enable) and EI2 (I C interrupt enable) bits are also set, an I C  
interrupt is requested. SI is set by hardware when one of 25 of the  
ENA = 1: When ENA is “1”, SIO1 is enabled. The P5.6 and P5.7  
port latches must be set to logic 1.  
2
26 possible I C interface states is entered. The only state that does  
not cause SI to be set is state F8H, which indicates that no relevant  
state information is available.  
2
ENA should not be used to temporarily release the I C-bus since,  
2
when ENA is reset, the I C-bus status is lost. The AA flag should be  
While SI is set, the low period of the serial clock on the SCL line is  
stretched, and the serial transfer is suspended. A high level on the  
SCL line is unaffected by the serial interrupt flag. SI must be reset  
by software.  
used instead (see description of the AA flag in the following text).  
In the following text, it is assumed the ENA = “1”.  
STA, the START flag  
STA = 1: When the STA bit is set to enter a master mode, the I C  
hardware checks the status of the I C bus and generates a START  
condition if the bus is free. If the bus is not free, the I C interface  
2
SI = 0: When the SI flag is reset, no serial interrupt is requested,  
and there is no stretching of the serial clock on the SCL line.  
2
2
waits for a STOP condition (which will free the bus) and generates a  
START condition after a delay of a half clock period of the internal  
serial clock generator.  
17  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
AA, the Assert Acknowledge flag  
not requested. Thus, the hardware can be temporarily released from  
the I C bus while the bus status is monitored. While the hardware is  
2
AA = 1: If the AA flag is set, an acknowledge (low level to SDA)  
will be returned during the acknowledge clock pulse on the SCL line  
when:  
released from the bus, START and STOP conditions are detected,  
and serial data is shifted in. Address recognition can be resumed at  
any time by setting the AA flag. If the AA flag is set when the part’s  
own slave address or the general call address has been partly  
received, the address will be recognized at the end of the byte  
transmission.  
The “own slave address” has been received.  
The general call address has been received while the general call  
bit (GC) in I2ADR is set.  
2
A data byte has been received while the I C interface is in the  
CR0, CR1, and CR2, the Clock Rate Bits  
2
master receiver mode.  
These three bits determine the serial clock frequency when the I C  
2
interface is in a master mode. An I C rate of 100kHz or lower is  
2
A data byte has been received while the I C interface is in the  
typical and can be derived from many oscillator frequencies. The  
various serial rates are shown in Table 3. A variable bit rate may  
also be used if Timer 1 is not required for any other purpose while  
addressed slave receiver mode.  
AA = 0: If the AA flag is reset, a not acknowledge (high level to  
SDA) will be returned during the acknowledge clock pulse on the  
SCL line when:  
2
the I C hardware is in a master mode. The frequencies shown in  
2
Table 3 are unimportant when the I C hardware is in a slave mode.  
2
A data byte has been received while the I C interface is in the  
In the slave modes, the hardware will automatically synchronize with  
the incoming clock frequency.  
master receiver mode.  
2
2
A data byte has been received while the I C interface is in the  
The I C Status Register, I2STA  
addressed slave receiver mode.  
I2STA is an 8-bit read-only special function register. The three least  
significant bits are always zero. The five most significant bits contain  
the status code. There are 26 possible status codes. When I2STA  
contains F8H, no relevant state information is available and no serial  
interrupt is requested. All other I2STA values correspond to defined  
hardware interface states. When each of these states is entered, a  
serial interrupt is requested (SI = “1”).  
2
When the I C interface is in the addressed slave transmitter mode,  
state C8H will be entered after the last serial data byte is  
transmitted. When SI is cleared, the I C interface leaves state C8H,  
enters the not addressed slave receiver mode, and the SDA line  
remains at a high level. In state C8H, the AA flag can be set again  
for future address recognition.  
2
2
NOTE: A detailed I C interface description and usage  
information, including example driver code, will be provided in  
a separate document.  
2
When the I C interface is in the not addressed slave mode, its own  
slave address and the general call address are ignored.  
Consequently, no acknowledge is returned, and a serial interrupt is  
2
Table 3. I C Rate Control  
2
Example I C Rates at Specific Oscillator Frequencies  
Frequency Select  
(CR2, CR1, CR0)  
Clock Divisor  
8 MHz  
12 MHz  
16 MHz  
20 MHz  
24 MHz  
30 MHz  
1
0h (0000)  
1h (0001)  
2h (0010)  
3h (0011)  
4h (0100)  
5h (0101)  
6h (0110)  
7h (0111)  
20  
40  
(400)  
1
1
1
(200)  
(300)  
(400)  
1
1
1
1
1
68  
(116.65)  
90.91  
50  
(176.46)  
(136.36)  
75  
(235.29)  
(181.82)  
100  
(294.12)  
(227.27)  
(352.94)  
(272.73)  
1
1
1
1
1
88  
(340.91)  
1
1
1
160  
272  
352  
(125)  
(150)  
(187.5)  
(110.29)  
85.23  
1
29.41  
22.73  
44.12  
34.09  
58.82  
73.53  
56.82  
88.24  
68.18  
45.45  
2
2
2
2
2
2
2
(Timer 1)  
(Timer 1)  
(Timer 1)  
(Timer 1)  
(Timer 1)  
(Timer 1)  
(Timer 1)  
NOTES:  
2
2
1. The XA-S3 I C interface does not conform to the 400kHz I C specification (which applies to rates greater than 100kHz) in all details, but  
may be used with care where higher rates are required by the application.  
2. The timer 1 overflow is used to clock the I C interface. The resulting bit rate is 1/2 of the timer overflow rate.  
2
18  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
XA-S3 Timer/Counters  
Clock Output  
The XA-S3 has three general purpose counter/timers, two of which  
may also be used as baud rate generators for either or both of the  
UARTs.  
The CLKOUT pin allows easier external bus interfacing in some  
situations. This output reflects the X1 clock input to the XA, but is  
delayed to match the external bus outputs and strobes. The default  
is for CLKOUT to be on at reset, but it may be turned off via the  
CLKD bit that has been added to the BCR register.  
Timer 0 and 1  
These are identical to the standard XA-G3 timer 0 and 1.  
Timer 2  
Reset  
This is identical to the standard XA-G3 timer 2.  
Active low reset input, the same as the XA-G3.  
The associated RSTOUT pin provides an external indication via an  
active low open drain output when an internal reset occurs. The  
RSTOUT pin will be driven low when the RST pin is driven low,  
when a Watchdog reset occurs or the RESET instruction is  
executed. This signal may be used to inform other devices in a  
system that the XA-S3 has been reset.  
PCA  
This is a standard 80C51FC-style PCA counter/timer. The XA uses  
TCLK (the global peripheral clock which is Osc/4, Osc/16, or  
Osc/64), Timer 0 overflow, and External (ECI pin). When the ECI  
input is used, the falling edge clocks the PCA counter. The  
maximum rate for the counter in this mode on the XA is Osc/4. Each  
PCA module has its own interrupt (in addition to the standard global  
PCA interrupt).  
The latched values of EA and BUSW are NOT automatically  
updated when an internal reset occurs. RSTOUT may be used to  
apply an external reset to the XA-S3 in order to update the  
previously latched EA and BUSW values. However, since RSTOUT  
reflects ALL reset sources, it cannot simply be fed back into the RST  
pin without other logic.  
CPS1  
CPS0  
PCA Clock Source  
TCLK (osc/4, osc/16, or osc/64  
Timer 0 Overflow  
0
1
1
x
0
1
ECI (PCA External Clock Input)  
The reset source identification register (RSTSRC) indicates the  
cause of the most recent XA reset. The cause may have been an  
externally applied reset signal, execution of the RESET instruction,  
or a Watchdog reset. Figure 6 shows the fields in the RSTSRC  
register.  
Watchdog Timer  
This is a standard XA-G3 watchdog timer. This watchdog timer  
always comes up running at reset. The watchdog acts the same on  
EPROM, ROM, and ROMless parts, as in the XA-G3.  
UARTs  
Power Reduction Modes  
Standard XA-G3 UART0 and UART1 with double buffered transmit  
register. A flag has been added to SnSTAT that is set if any of the  
status flags (BRn, FEn, or OEn) is set for the corresponding UART  
channel. This allows polling for UART errors quickly at the interrupt  
service routine. Baud rate sources may be timer 1 or timer 2.  
The XA-S3 supports Idle and Power Down modes of power  
reduction. The idle mode leaves some peripherals running in order  
to allow them to activate the processor when an interrupt is  
generated. The power down mode stops the oscillator in order to  
absolutely minimize power. The processor can be made to exit  
power down mode via a reset or one of the external interrupt inputs  
(INT0 or INT1). This will occur if the interrupt is enabled and its  
priority is higher than that defined by IM3 through IM0. In power  
down mode, the power supply voltage may be reduced to the RAM  
Clocking / Baud Rate Generation  
Same as for the XA-G3.  
I/O Port Output Configuration  
Port output configurations are the same as for the XA-G3: open  
drain, quasi-bidirectional, push-pull, and off.  
keep-alive voltage V  
. This retains the RAM, register, and SFR  
RAM  
contents at the point where power down mode was entered. V  
must be raised to within the operating range before power down  
mode is exited.  
DD  
External Bus  
The external bus operates in the same manner as the XA-G3, but all  
24 address lines are brought out to the outside world. This allows for  
a maximum of 16 Mbytes of code memory and 16 Mbytes of data  
memory.  
RSTSRC  
Address:463h  
MSB  
LSB  
Not bit Addressable  
R_WD R_CMD R_EXT  
Reset Value: see below  
BIT  
SYMBOL  
FUNCTION  
RSTSRC.7  
RSTSRC.6  
RSTSRC.5  
RSTSRC.4  
RSTSRC.3  
RSTSRC.2  
RSTSRC.1  
RSTSRC.0  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
Reserved for future use. Should not be set to 1 by user programs.  
Indicates that the last reset was caused by a watchdog timer overflow.  
Indicates that the last reset was caused by execution of the RESET instruction.  
Indicates that the last reset was caused by the external RST input.  
R_WD  
R_CMD  
R_EXT  
SU00942  
Figure 6. Reset source register (RSTSRC)  
19  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
INTERRUPTS  
UART 0 transmitter and receiver interrupts (2)  
XA-S3 interrupt sources include the following:  
UART 1 transmitter and receiver interrupts (2)  
External interrupts 0 and 1 (2)  
2
I C interrupt (1)  
Timer 0, 1, and 2 interrupts (3)  
PCA: 1 global and 5 channel interrupts (6)  
A/D interrupt (1)  
Software interrupts (7)  
There are a total of 17 hardware interrupt sources, enable bits,  
priority bit sets, etc.  
EXCEPTION/TRAPS PRECEDENCE  
DESCRIPTION  
VECTOR ADDRESS  
ARBITRATION RANKING  
Reset (h/w, watchdog, s/w)  
Breakpoint  
0000–0003  
0004–0007  
0008–000B  
000C–000F  
0010–0013  
0014–0017  
0040–007F  
0 (High)  
1
1
1
1
1
1
Trace  
Stack Overflow  
Divide by 0  
User RETI  
TRAP 0–15 (software)  
EVENT INTERRUPTS  
INTERRUPT  
PRIORITY  
ARBITRATION  
RANKING  
DESCRIPTION  
FLAG BIT  
VECTOR ADDRESS  
ENABLE BIT  
External Interrupt 0  
Timer 0 Interrupt  
External Interrupt 1  
Timer 1 Interrupt  
Timer 2 Interrupt  
PCA Interrupt  
IE0  
TF0  
0080–0083  
0084–0087  
0088–008B  
008C–008F  
0090–0093  
0094–0097  
0098–009B  
00A0–00A3  
00A4–00A7  
00A8–00AB  
00AC–00AF  
00C0–00C3  
00C4–00C7  
00C8–00CB  
00CC–00CF  
00D0–00D3  
00D4–00D7  
EX0  
ET0  
EX1  
ET1  
ET2  
EPC  
EAD  
ERI0  
ETI0  
ERI1  
ETI1  
EC0  
EC1  
EC2  
EC3  
EC4  
EI2  
IPA0.3–0 (PX0)  
IPA0.7–4 (PT0)  
IPA1.3–0 (PX1)  
IPA1.7–4 (PT1)  
IPA2.3–0 (PT2)  
IPA2.7–4 (PPC)  
IPA3.3–0 (PAD)  
IPA4.3–0 (PRI0)  
IPA4.7–4 (PTI0)  
IPA5.3–0 (PRI1)  
IPA5.7–4 (PTI1)  
IPB0.3–0 (PC0)  
IPB0.7–4 (PC1)  
IPB1.3–0 (PC2)  
IPB1.7–4 (PC3)  
IPB2.3–0 (PC4)  
IPB2.7–4 (PI2)  
2
3
IE1  
4
TF1  
5
TF2 (EXF2)  
CCF0–CCF4, CF  
ADINT  
RI_0  
6
7
A/D Interrupt  
8
Serial Port 0 Rx  
Serial Port 0 Tx  
Serial Port 1 Rx  
Serial Port 1 Tx  
PCA channel 0  
PCA channel 1  
PCA channel 2  
PCA channel 3  
PCA channel 4  
9
TI_0  
10  
11  
12  
17  
18  
19  
20  
21  
22  
RI_1  
TI_1  
CCF0  
CCF1  
CCF2  
CCF3  
CCF4  
SI  
2
I C Interrupt  
SOFTWARE INTERRUPTS  
DESCRIPTION  
Software Interrupt 1  
Software Interrupt 2  
Software Interrupt 3  
Software Interrupt 4  
Software Interrupt 5  
Software Interrupt 6  
Software Interrupt 7  
FLAG BIT  
VECTOR ADDRESS  
0100–0103  
ENABLE BIT  
SWE1  
INTERRUPT PRIORITY  
SWR1  
SWR2  
SWR3  
SWR4  
SWR5  
SWR6  
SWR7  
(fixed at 1)  
(fixed at 2)  
(fixed at 3)  
(fixed at 4)  
(fixed at 5)  
(fixed at 6)  
(fixed at 7)  
0104–0107  
SWE2  
0108–010B  
010C–010F  
0110–0113  
SWE3  
SWE4  
SWE5  
0114–0117  
SWE6  
0118–011B  
SWE7  
20  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
RATING  
–55 to +125  
–65 to +150  
0 to +13.0  
UNIT  
°C  
Operating temperature under bias  
Storage temperature range  
°C  
Voltage on EA/V pin to V  
V
PP  
SS  
Voltage on any other pin to V  
–0.5 to V +0.5V  
V
mA  
W
SS  
DD  
Maximum I per I/O pin  
15  
OL  
Power dissipation (based on package heat transfer, not device power consumption)  
1.5  
DC ELECTRICAL CHARACTERISTICS  
V
DD  
= 2.7V to 5.5V, unless otherwise specified.  
T
amb  
= 0 to +70°C for commercial unless otherwise specified.  
LIMITS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
80  
I
I
I
Power supply current, operating  
Power supply current, Idle mode  
Power supply current, Power Down mode  
RAM keep-alive voltage  
5.0V, 30MHz  
5.0V, 30MHz  
5.0V, 3.0V  
mA  
mA  
µA  
V
DD  
35  
ID  
5
50  
PD  
V
V
V
1.5  
–0.5  
2.2  
RAM  
Input low voltage  
0.22 V  
V
IL  
DD  
Input high voltage, except XTAL1, RST  
V
V
= 5.0V  
= 3.0V  
V
IH  
DD  
2.0  
V
DD  
V
V
Input high voltage to XTAL1, RST  
For both 3.0V and 5.0V  
0.7 V  
V
IH1  
DD  
4
Output low voltage, all ports, ALE, PSEN  
I
I
= 3.2mA, V = 5.0V  
0.5  
0.4  
V
OL  
OL  
OL  
DD  
= 1.0mA, V = 3.0V  
V
DD  
2
V
V
Output high voltage, all ports, ALE, PSEN  
I
= –100µA, V = 4.5V  
2.4  
2.0  
2.4  
2.2  
V
OH1  
OH  
DD  
I
= –30µA, V = 2.7V  
V
OH  
DD  
3
Output high voltage, all ports ALE, PSEN  
I
I
= –3.2mA, V = 4.5V  
V
OH2  
OH  
OH  
DD  
= –1.0mA, V = 2.7V  
V
DD  
1
C
Input/Output pin capacitance  
15  
pF  
µA  
µA  
µA  
µA  
IO  
7
I
I
I
Logical 0 input current, all ports  
V
= 0.45V  
–50  
±10  
IL  
IN  
6
Input leakage current, all ports  
V
= V or V  
IL IH  
LI  
IN  
5
Logical 1 to 0 transition current, all ports  
At V = 5.5V  
–650  
–250  
TL  
DD  
At V = 2.7V  
DD  
NOTES:  
1. Maximum 15pF for EA/V  
.
PP  
2. Ports in quasi-bidirectional mode with weak pullup (applies to ALE, PSEN only during RESET).  
3. Ports in PUSH-PULL mode, both pullup and pulldown assumed to be the same strength.  
4. In all output modes.  
5. Port pins source a transition current when used in quasi-bidirectional mode and externally driven from 1 to 0. This current is highest when  
is approximately 2V.  
V
IN  
6. Measured with port in high impedance mode.  
7. Measured with port in quasi-bidirectional mode.  
8. Under steady state (non-transient) conditions, I must be externally limited as follows:  
OL  
Maximum I per port pin:  
15mA  
26mA  
71mA  
OL  
Maximum I per 8-bit port:  
OL  
Maximum total I for all outputs:  
OL  
If I exceeds the test condition, V may exceed the related specification. Pins are not guaranteed to sink current greater than the listed  
OL  
OL  
test conditions.  
21  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
A/D CONVERTER DC ELECTRICAL CHARACTERISTICS  
T
amb  
= 0 to +70°C for commercial unless otherwise specified.  
LIMITS  
SYMBOL  
AV  
PARAMETER  
Analog supply voltage  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
2.7  
3.3  
2.5  
2.5  
NA  
V
DD  
AI  
AI  
AI  
Analog supply current (operating)  
Analog supply current (Idle mode)  
Analog supply current (Power-Down mode)  
Analog input voltage  
Port 5 = 0 to AV  
mA  
µA  
DD  
DD  
ID  
µA  
PD  
AV  
AV –0.2  
AV +0.2  
V
IN  
REF  
IA  
SS  
DD  
R
C
Resistance between V  
and V  
125  
225  
15  
kΩ  
REF+  
REF–  
Analog input capacitance  
pF  
1, 2, 3  
DL  
Differential non-linearity  
±1  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
dB  
e
1, 4  
IL  
e
Integral non-linearity  
±1  
1, 5  
OS  
Offset error  
±4  
e
1, 5, 9  
COS  
Compensated offset error  
±2  
e
1, 6  
G
Gain error  
±1  
e
1, 7  
A
e
Absolute voltage error  
±4  
1, 7, 9  
CA  
Compensated absolute voltage error  
Channel-to-channel matching  
±2.5  
±1  
e
M
CTC  
8
C
Crosstalk between inputs of port  
0 – 100kHz  
–60  
t
NOTES:  
1. Conditions: AV  
= 0V; AV  
= 3.07V.  
REF–  
REF+  
2. The differential non-linearity (DL ) is the difference between the actual step width and the ideal step width. See Figure 7.  
e
3. The ADC is monotonic, there are no missing codes.  
4. The integral non-linearity (IL ) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
e
appropriate adjustment of gain and offset errors. See Figure 7.  
5. The offset error (OS ) is the absolute difference between the straight line which fits the actual transfer curve (after removing gain error), and  
e
the straight line which fits the ideal transfer curve. See Figure 7.  
6. The gain error (G ) is the relative difference in percent between the straight line fitting the actual transfer curve (after removing offset error),  
e
and the straight line which fits the ideal transfer curve. Gain error is constant at every point on the transfer curve. See Figure 7.  
7. The absolute voltage error (A ) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated  
e
ADC and the ideal transfer curve.  
8. This should be considered when both analog and digital signals are input simultaneously to Port 5. Parameter is guaranteed by design.  
9. Compensated values are the direct ADC result minus the result of a calibration operation.  
22  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
Offset  
error  
Gain  
error  
OS  
e
G
e
255  
254  
253  
252  
251  
Full Scale  
error  
FS  
e
250  
(2)  
7
(1)  
Code  
Out  
6
5
(5)  
4
(4)  
3
(3)  
2
1
1 LSB  
(ideal)  
0
1
2
3
4
5
6
7
250  
251  
252  
253  
254  
)
255  
256  
AV (LSB  
IN  
ideal  
Offset  
error  
OS  
e
AV  
AV  
REF–  
REF+  
256  
1 LSB =  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential non-linearity (DL ).  
e
(4) Integral non-linearity (IL ).  
e
(5) Center of a step of the actual transfer curve.  
SU01010  
Figure 7. ADC Conversion Characteristic  
23  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
AC ELECTRICAL CHARACTERISTICS (5V)  
V
DD  
= 4.5V to 5.5V; T  
= 0 to +70°C for commercial.  
amb  
LIMITS  
SYMBOL  
FIGURE  
PARAMETER  
UNIT  
MIN  
MAX  
External Clock  
f
t
t
t
t
t
14  
14  
14  
14  
14  
14  
Oscillator frequency  
Clock period and CPU timing cycle  
Clock high-time  
0
30  
MHz  
ns  
C
1/f  
C
C
t
C
t
C
* 0.5  
* 0.4  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
Clock low time  
ns  
Clock rise time  
5
5
ns  
Clock fall time  
ns  
Address Cycle  
t
t
t
8, 10, 12  
8, 10, 12  
8, 10, 12  
ALE pulse width (programmable)  
(V1 * t ) – 6  
ns  
ns  
ns  
LHLL  
AVLL  
LLAX  
C
Address valid to ALE de-asserted (set-up)  
Address hold after ALE de-asserted  
(V1 * t ) – 12  
C
(t /2) – 10  
C
Code Read Cycle  
t
t
t
t
t
t
t
t
8
8
8
9
8
8
8
8
PSEN pulse width  
(V2 * t ) – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PLPH  
LLPL  
AVIVA  
AVIVB  
PLIV  
C
ALE de-asserted to PSEN asserted  
(t /2) – 7  
C
Address valid to instruction valid, ALE cycle (access time)  
Address valid to instruction valid, non-ALE cycle (access time)  
PSEN asserted to instruction valid (enable time)  
Instruction hold after PSEN de-asserted  
(V3 * t ) – 36  
C
(V4 * t ) – 29  
C
(V2 * t ) – 29  
C
0
0
PHIX  
PHIZ  
IXUA  
Bus 3-State after PSEN de-asserted  
t – 8  
C
Hold time of unlatched part of address after instruction latched  
Data Read Cycle  
t
t
t
t
t
t
t
t
10  
10  
10  
11  
10  
10  
10  
10  
RD pulse width  
(V7 * t ) – 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
LLRL  
C
ALE de-asserted to RD asserted  
(t /2) – 7  
C
Address valid to data input valid, ALE cycle (access time)  
Address valid to data input valid, non-ALE cycle (access time)  
RD low to valid data in (enable time)  
(V6 * t ) – 36  
C
AVDVA  
AVDVB  
RLDV  
RHDX  
RHDZ  
DXUA  
(V5 * t ) – 29  
C
(V7 * t ) – 29  
C
Data hold time after RD de–asserted  
0
0
Bus 3-State after RD de-asserted (disable time)  
Hold time of unlatched part of address after data latched  
t – 8  
C
Data Write Cycle  
t
t
t
t
t
t
12  
12  
12  
12  
12  
12  
WR pulse width  
(V8 * t ) – 10  
ns  
ns  
ns  
ns  
ns  
ns  
WLWH  
LLWL  
C
ALE falling edge to WR asserted  
(V12 * t ) – 10  
C
Data valid before WR asserted (data set-up time)  
Data hold time after WR de-asserted (Note 6)  
Address valid to WR asserted (address set-up time) (Note 5)  
Hold time of unlatched part of address after WR is de-asserted  
(V13 * t ) – 22  
C
QVWX  
WHQX  
AVWL  
UAWH  
(V11 * t ) – 5  
C
(V9 * t ) – 22  
C
(V11 * t ) – 7  
C
Wait Input  
t
t
13  
13  
WAIT stable after bus strobe (RD, WR, or PSEN) asserted  
WAIT hold after bus strobe (RD, WR, or PSEN) asserted  
(V10 * t ) – 30  
ns  
ns  
WTH  
C
(V10 * t ) – 5  
WTL  
C
NOTES ON PAGE 27.  
24  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
AC ELECTRICAL CHARACTERISTICS (5V) (continued)  
This set of parameters is referenced to the XA-S3 clock output.  
LIMITS  
SYMBOL  
FIGURE  
PARAMETER  
UNIT  
MIN  
MAX  
Address Cycle  
t
t
t
t
8
8
8
8
Delay from CLKOUT rising edge to ALE rising edge  
Delay from CLKOUT falling edge to ALE falling edge  
Delay from CLKOUT rising edge to address valid  
Address hold after CLKOUT rising edge  
10  
40  
ns  
ns  
ns  
ns  
CHLH  
CLLL  
CHAV  
CHAX  
Code Read Cycle  
t
t
t
t
t
8
8
8
8
8
Delay from CLKOUT rising edge to PSEN asserted  
Delay from CLKOUT rising edge to PSEN de-asserted  
Instruction valid to CLKOUT rising edge  
ns  
ns  
ns  
ns  
ns  
CHPL  
CHPH  
IVCH  
CHIX  
CHIZ  
Instruction hold from CLKOUT rising edge  
Bus 3-State after CLKOUT rising edge (code read)  
Data Read Cycle  
t
t
t
t
t
10  
10  
10  
10  
10  
Delay from CLKOUT rising edge to RD asserted  
Delay from CLKOUT rising edge to RD de-asserted  
Data valid to CLKOUT rising edge  
ns  
ns  
ns  
ns  
ns  
CHRL  
CHRH  
DVCH  
CHDX  
CHDZ  
Data hold after CLKOUT rising edge  
Bus 3-State after CLKOUT rising edge (data read)  
Data Write Cycle  
t
t
t
t
t
12  
12  
12  
12  
12  
Delay from CLKOUT rising edge to WR asserted  
Delay from CLKOUT rising edge to WR de-asserted  
Data valid to CLKOUT rising edge  
ns  
ns  
ns  
ns  
ns  
CHWL  
CHWH  
QVCH  
CHQX  
CHQZ  
Data hold after CLKOUT rising edge  
Bus 3-State after CLKOUT rising edge (data write)  
Wait Input  
t
t
13  
13  
WAIT stable before CLKOUT rising edge  
WAIT hold after CLKOUT rising edge  
ns  
ns  
CHWTH  
CHWTL  
NOTES ON PAGE 27.  
25  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
AC ELECTRICAL CHARACTERISTICS (3V)  
V
DD  
= 2.7V to 4.5V; T  
= 0 to +70°C for commercial.  
amb  
LIMITS  
SYMBOL  
FIGURE  
PARAMETER  
UNIT  
MIN  
MAX  
Address Cycle  
t
t
t
8, 10, 12  
8, 10, 12  
8, 10, 12  
ALE pulse width (programmable)  
(V1 * t ) – 10  
ns  
ns  
ns  
LHLL  
AVLL  
LLAX  
C
Address valid to ALE de-asserted (set-up)  
Address hold after ALE de-asserted  
(V1 * t ) – 18  
C
(t /2) – 12  
C
Code Read Cycle  
t
t
t
t
t
t
t
t
8
8
8
9
8
8
8
8
PSEN pulse width  
(V2 * t ) – 12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PLPH  
LLPL  
AVIVA  
AVIVB  
PLIV  
C
ALE de-asserted to PSEN asserted  
(t /2) – 9  
C
Address valid to instruction valid, ALE cycle (access time)  
Address valid to instruction valid, non-ALE cycle (access time)  
PSEN asserted to instruction valid (enable time)  
Instruction hold after PSEN de-asserted  
(V3 * t ) – 58  
C
(V4 * t ) – 52  
C
(V2 * t ) – 52  
C
0
0
PHIX  
PHIZ  
IXUA  
Bus 3-State after PSEN de-asserted  
t – 8  
C
Hold time of unlatched part of address after instruction latched  
Data Read Cycle  
t
t
t
t
t
t
t
t
10  
10  
10  
11  
10  
10  
10  
10  
RD pulse width  
(V7 * t ) – 12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
LLRL  
C
ALE de-asserted to RD asserted  
(t /2) – 9  
C
Address valid to data input valid, ALE cycle (access time)  
Address valid to data input valid, non-ALE cycle (access time)  
RD low to valid data in (enable time)  
(V6 * t ) – 58  
C
AVDVA  
AVDVB  
RLDV  
RHDX  
RHDZ  
DXUA  
(V5 * t ) – 52  
C
(V7 * t ) – 52  
C
Data hold time after RD de–asserted  
0
0
Bus 3-State after RD de-asserted (disable time)  
Hold time of unlatched part of address after data latched  
t – 8  
C
Data Write Cycle  
t
t
t
t
t
t
12  
12  
12  
12  
12  
12  
WR pulse width  
(V8 * t ) – 12  
ns  
ns  
ns  
ns  
ns  
ns  
WLWH  
LLWL  
C
ALE falling edge to WR asserted  
(V12 * t ) – 10  
C
Data valid before WR asserted (data set-up time)  
Data hold time after WR de-asserted (Note 6)  
Address valid to WR asserted (address set-up time) (Note 5)  
Hold time of unlatched part of address after WR is de-asserted  
(V13 * t ) – 28  
C
QVWX  
WHQX  
AVWL  
UAWH  
(V11 * t ) – 8  
C
(V9 * t ) – 28  
C
(V11 * t ) – 10  
C
Wait Input  
t
t
13  
13  
WAIT stable after bus strobe (RD, WR, or PSEN) asserted  
WAIT hold after bus strobe (RD, WR, or PSEN) asserted  
(V10 * t ) – 40  
ns  
ns  
WTH  
C
(V10 * t ) – 5  
WTL  
C
NOTES ON PAGE 27.  
26  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
AC ELECTRICAL CHARACTERISTICS (3V) (continued)  
This set of parameters is referenced to the XA-S3 clock output.  
LIMITS  
SYMBOL  
FIGURE  
PARAMETER  
UNIT  
MIN  
MAX  
Address Cycle  
t
t
t
t
8
8
8
8
Delay from CLKOUT rising edge to ALE rising edge  
Delay from CLKOUT falling edge to ALE falling edge  
Delay from CLKOUT rising edge to address valid  
Address hold after CLKOUT rising edge  
15  
60  
ns  
ns  
ns  
ns  
CHLH  
CLLL  
CHAV  
CHAX  
Code Read Cycle  
t
t
t
t
t
8
8
8
8
8
Delay from CLKOUT rising edge to PSEN asserted  
Delay from CLKOUT rising edge to PSEN de-asserted  
Instruction valid to CLKOUT rising edge  
ns  
ns  
ns  
ns  
ns  
CHPL  
CHPH  
IVCH  
CHIX  
CHIZ  
Instruction hold from CLKOUT rising edge  
Bus 3-State after CLKOUT rising edge (code read)  
Data Read Cycle  
t
t
t
t
t
10  
10  
10  
10  
10  
Delay from CLKOUT rising edge to RD asserted  
Delay from CLKOUT rising edge to RD de-asserted  
Data valid to CLKOUT rising edge  
ns  
ns  
ns  
ns  
ns  
CHRL  
CHRH  
DVCH  
CHDX  
CHDZ  
Data hold after CLKOUT rising edge  
Bus 3-State after CLKOUT rising edge (data read)  
Data Write Cycle  
t
t
t
t
t
12  
12  
12  
12  
12  
Delay from CLKOUT rising edge to WR asserted  
Delay from CLKOUT rising edge to WR de-asserted  
Data valid to CLKOUT rising edge  
ns  
ns  
ns  
ns  
ns  
CHWL  
CHWH  
QVCH  
CHQX  
CHQZ  
Data hold after CLKOUT rising edge  
Bus 3-State after CLKOUT rising edge (data write)  
Wait Input  
t
t
13  
13  
WAIT stable before CLKOUT rising edge  
WAIT hold after CLKOUT rising edge  
ns  
ns  
CHWTH  
CHWTL  
NOTES:  
1. Load capacitance for all outputs = 50pF.  
2. Variables V1 through V13 reflect programmable bus timing, which is programmed via the Bus Timing registers (BTRH and BTRL). Refer to  
the XA User Guide for details of the bus timing settings.  
V1) This variable represents the programmed width of the ALE pulse as determined by the ALEW bit in the BTRL register. V1 = 0.5 if the  
ALEW bit = 0, and 1.5 if the ALEW bit = 1.  
V2) This variable represents the programmed width of the PSEN pulse as determined by the CR1 and CR0 bits or the CRA1, CRA0, and  
ALEW bits in the BTRL register.  
For a bus cycle with no ALE, V2 = 1 if CR1/0 = 00, 2 if CR1/0 = 01, 3 if CR1/0 = 10, and 4 if CR1/0 = 11. Note that during burst  
mode code fetches, PSEN does not exhibit transitions at the boundaries of bus cycles. V2 still applies for the purpose of  
determining peripheral timing requirements.  
For a bus cycle with an ALE, V2 = the total bus cycle duration (2 if CRA1/0 = 00, 3 if CRA1/0 = 01, 4 if CRA1/0 = 10, and 5 if  
CRA1/0 = 11) minus the number of clocks used by ALE (V1 + 0.5) = 2.  
Example: if CRA1/0 = 10 and ALEW = 1, the V2 = 4 – (1.5 + 0.5) = 2.  
V3) This variable represents the programmed length of an entire code read cycle with ALE. This time is determined by the CRA1 and  
CRA0 bits in the BTRL register. V3 = the total bus cycle duration (2 if CRA1/0 = 00, 3 if CRA1/0 = 01, 4 if CRA1/0 = 10, and  
5 if CRA1/0 = 11).  
V4) This variable represents the programmed length of an entire code read cycle with no ALE. This time is determined by the CR1 and  
CR0 bits in the BTRL register. V4 = 1 if CR1/0 = 00, 2 if CR1/0 = 01, 3 if CR1/0 = 10, and 4 if CR1/0 = 11.  
V5) This variable represents the programmed length of an entire data read cycle with no ALE. This time is determined by the DR1 and  
DR0 bits in the BTRH register. V5 = 1 if DR1/0 = 00, 2 if DR1/0 = 01, 3 if DR1/0 = 10, and 4 if DR1/0 = 11.  
V6) This variable represents the programmed length of an entire data read cycle with ALE. The time is determined by the DRA1 and  
DRA0 bits in the BTRH register. V6 = the total bus cycle duration (2 if DRA1/0 = 00, 3 if DRA1/0 = 01, 4 if DRA1/0 = 10, and  
5 if DRA1/0 = 11).  
27  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
V7) This variable represents the programmed width of the RD pulse as determined by the DR1 and DR0 bits or the DRA1, DRA0 in the  
BTRH register, and the SLEW bit in the BTRL register. Note that during a 16-bit operation on an 8-bit external bus, RD remains low  
and does not exhibit a transition between the first and second byte bus cycles. V7 still applies for the purpose of determining  
peripheral timing requirements. The timing for the first byte is for a bus cycle with ALE, the timing for the second byte is for a bus  
cycle with no ALE.  
For a bus cycle with no ALE, V7 = 1 if DR1/0 = 00, 2 if DR1/0 = 01, 3 if DR1/0 = 10, and 4 if DR1/0 = 11.  
For a bus cycle with an ALE, V7 = the total bus cycle duration (2 if DRA1/0 = 00, 3 if DRA1/0 = 01, 4 if DRA1/0 = 10, and  
5 if DRA1/0 = 11) minus the number of clocks used by ALE (V1 + 0.5).  
Example: if DRA1/0 = 00 and ALEW = 0, then V7 = 2 – (0.5 +0.5) = 1.  
V8) This variable represents the programmed width of the WRL and/or WRH pulse as determined by the WM1 bit in the BTRL register.  
V8 = 1 if WM1 = 0, and 2 if WM1 = 1.  
V9) This variable represents the programmed address setup time for a write as determined by the data write cycle duration (defined by  
DW1 and DW0 or the DWA1 and DWA0 bits in the BTRH register), the WM0 bit in the BTRL register, and the value of V8.  
For a bus cycle with an ALE, V9 = the total bus write cycle duration (2 if DWA1/0 = 00, 3 if DWA1/0 = 01, 4 if DWA1/0 = 10, and  
5 if DWA1/0 = 11) minus the number of clocks used by the WRL and/or WRH pulse (V8) minus the number of clocks used by data  
hold time (0 if WM0 = 0 and 1 if WM0 = 1).  
Example: If DWA1/0 = 10, WM0 = 1, and WM1 = 1, then V9 = 4 – 1 – 2 = 1.  
For a bus cycle with no ALE, V9 = the total bus cycle duration (2 if DW1/0 = 00, 3 if DW1/0 = 01, 4 if DW1/0 = 10, and  
5 if DW1/0 = 11) minus the number of clocks used by the WRL and/or WRH pulse (V8), minus the number of clocks used by data  
hold time (0 if WMo = 0 and 1 if WM0 = 1).  
Example: If DW1/0 = 11, WM0 = 1, and WM1 = 0, then V9 = 5 – 1 – 1 = 3.  
V10) This variable represents the length of a bus strobe for calculation of WAIT set-up and hold times. The strobe may be RD (for data  
read cycles), WRL and/or WRH (for data write cycles), or PSEN (for code read cycles), depending on the type of bus cycle being  
widened by WAIT. V10 = 2 for WAIT associated with a code read cycle using PSEN. V10 = V8 for a data write cycle using WRL  
and/or WRH. V10 = V7 – 1 for a data read cycle using RD. This means that a single clock data read cycle cannot be stretched using  
WAIT. If WAIT is used to vary the duration of data read cycles, the RD strobe width must be set to be at least two clocks in duration.  
Also see Note 4.  
V11) This variable represents the programmed write hold time as determined by the WM0 bit in the BTRL register. V11 0 if the WM0 bit = 0,  
and 1 if the WM0 bit = 1.  
V12) this variable represents the programmed period between the end of the ALE pulse and the beginning of the WRL and/or WRH pulse  
as determined by the data write cycle duration (defined by the DWA1 and DWA0 bits in the BTRH register), the WM0 bit in the BTRL  
register, and the values of V1 and V8. V12 = the total bus cycle duration (2 if DWA1/0 = 00, 3 if DWA1/0 = 01, 4 if DWA1/0 = 10, and 5  
if DWA1/0 = 11) minus the number of clocks used by the WRL and/or WRH pulse (V8), minus the number of clocks used by data hold  
time (0 if WM0 = 0 and 1 if WM0 = 1), minus the width of the ALE pulse (V1).  
Example: If SWA1/0 = 11, WM0 = 1, WM1 = 0, and ALEW = 1, then V12 = 5 – 1 – 1 – 1.5 = 1.5.  
V13) This variable represents the programmed data setup time for a write as determined by the data write cycle duration (defined by DW1  
and DW0 or the DWA1 and DWA0 bits in the BTRH register), the WM0 bit in the BTRL register, and the values of V1 and V8.  
For a bus cycle with an ALE, V13 = the total bus cycle duration (2 if DWA1/0 = 00, 3 if DWA1/0 = 01, 4 if DWA1/0 = 10, and  
5 if DWA1/0 = 11) minus the number of clocks used by the WRL and/or WRH pulse (V8), minus the number of clocks used by  
data hold time (0 if WM0 = 0 and 1 if WM0 = 1), minus the number of clocks used by ALE (V1 + 0.5).  
Example: If DWA1/0 = 11, WM0 = 1, WM1 = 1, and ALEW = 0, then V13 = 5 – 1 – 2 – 1 = 1.  
For a bus cycle with no ALE, V13 = the total bus cycle duration (2 if DW1/0 = 00, 3 if DW1/0 = 01, 4 if DW1/0 = 10, and  
5 if DW1/0 = 11) minus the number of clocks used by the WRL and/or WRH pulse (V8), minus the number of clocks used by  
data hold time (0 if WM0 = 0 and 1 if WM0 = 1).  
Example: If DW1/0 = 01, WM0 = 1, and WM1 = 0, then V13 = 3 – 1 – 1 = 1.  
3. Not all combinations of bus timing configuration values result in valid bus cycles. Please refer to the XA User Guide section on the External  
Bus for details.  
4. When code is being fetched for execution on the external bus, a burst mode fetch is used that dows not have PSEN edges in every fetch  
cycle. This would be A3–A0 for an 8-bit bus, and A3–A1 for a 16-bit bus. Also, a 16-bit read operation conducted on an 8-bit wide bus  
similarly does not include two separate RD strobes. So, a rising edge on the low order address line (A0) must be used to trigger a WAIT in  
the second half of such a cycle.  
5. This parameter is provided for peripherals that have the data clocked in on the falling edge of the WR strobe. This is not usually the case  
and in most applications this parameter is not used.  
6. Please note that the XA-S3 requires that extended data bus hold time (WM0 = 1) to be used with external bus write cycles.  
28  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
AC WAVEFORMS  
CLKOUT  
t
t
t
t
CHPH  
CHLH  
CLLL  
CHPL  
t
LHLL  
ALE  
t
CHAX  
t
t
t
CHAV  
PHIZ  
t
PLPH  
CHIZ  
t
LLPL  
PSEN  
t
t
t
IVCH  
CHIX  
t
t
LLAX  
AVLL  
t
PLIV  
PHIX  
Multiplexed  
Address and Data  
A4–A11 or A4–A23  
INSTR IN*  
t
IXUA  
t
AVIVA  
Unmultiplexed  
Address  
A0 or A1–A3, A12–A23  
*INSTR IN is either D0–D7 or D0–D15, depending on the bus width (8 or 16 bits).  
Figure 8. External Program Memory Read Cycle (ALE Cycle)  
SU00943A  
PSEN  
Multiplexed  
Address and Data  
INSTR IN*  
t
AVIVB  
Unmultiplexed  
Address  
A0 or A1–A3, A12–A23  
*INSTR IN is either D0–D7 or D0–D15, depending on the bus width (8 or 16 bits).  
Figure 9. External Program Memory Read Cycle (Non-ALE Cycle)  
SU00949  
29  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
CLKOUT  
t
t
CHRH  
CHRL  
t
LHLL  
ALE  
RD  
t
t
RHDZ  
t
RLRH  
CHDZ  
t
LLRL  
t
t
CHDX  
DVCH  
t
t
LLAX  
AVLL  
t
t
RHDX  
RLDV  
Multiplexed  
Address and Data  
A4–A11 or A4–A23  
DATA IN*  
t
DXUA  
t
AVDVA  
Unmultiplexed  
Address  
A0 or A1–A3, A12–A23  
*DATA IN is either D0–D7 or D0–D15, depending on the bus width (8 or 16 bits).  
Figure 10. External Data Memory Read Cycle (ALE Cycle)  
SU00944  
RD  
Multiplexed  
Address and Data  
D0–D7  
t
AVDVB  
Unmultiplexed  
Address  
A0–A3, A12–A23  
SU00950A  
Figure 11. External Data Memory Read Cycle (Non-ALE Cycle)  
30  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
CLKOUT  
t
t
CHWH  
CHWL  
t
CHQZ  
ALE  
WR  
t
t
CHQX  
WHQX  
t
t
WLWH  
LLWL  
t
QVCH  
t
QVWX  
t
t
LLAX  
AVLL  
Multiplexed  
Address and Data  
A4–A11 or A4–A23  
DATA OUT*  
t
UAWH  
t
AVWL  
Unmultiplexed  
Address  
A0 or A1–A3, A12–A23  
*DATA OUT is either D0–D7 or D0–D15, depending on the bus width (8 or 16 bits).  
Figure 12. External Data Memory Write Cycle  
SU00945  
XTAL1  
ALE  
t
CRAR  
ADDRESS BUS  
WAIT  
t
t
CHWTL  
CHWTH  
BUS STROBE  
(WRL, WRH,  
RD, OR PSEN)  
t
WTH  
t
WTL  
(The dashed line shows the strobe without WAIT.)  
SU01068  
Figure 13. WAIT Signal Timing  
31  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
V
–0.5  
DD  
0.7V  
DD  
–0.1  
0.45V  
0.2V  
DD  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
t
C
SU00842  
Figure 14. External Clock Drive  
V
–0.5  
DD  
0.2V +0.9  
DD  
0.2V –0.1  
DD  
0.45V  
NOTE:  
AC inputs during testing are driven at V –0.5 for a logic ‘1’ and 0.45V for a logic ‘0’.  
DD  
Timing measurements are made at the 50% point of transitions.  
SU00703A  
Figure 15. AC Testing Input/Output  
V
V
+0.1V  
LOAD  
V
V
–0.1V  
TIMING  
REFERENCE  
POINTS  
OH  
V
LOAD  
–0.1V  
LOAD  
+0.1V  
OL  
NOTE:  
For timing purposes, a port is no longer floating when a 100mV change from load voltage occurs,  
and begins to float when a 100mV change from the loaded V /V level occurs. I /I ≥ ±20mA.  
OH OL  
OH OL  
SU00011  
Figure 16. Float Waveform  
V
V
DD  
DD  
V
V
DD  
DD  
RST  
V
DD  
RST  
EA  
EA  
(NC)  
XTAL2  
XTAL1  
(NC)  
CLOCK SIGNAL  
XTAL2  
XTAL1  
CLOCK SIGNAL  
V
SS  
V
SS  
SU00591B  
SU00590B  
Figure 17. I Test Condition, Active Mode  
Figure 18. I Test Condition, Idle Mode  
DD  
DD  
All other pins are disconnected  
All other pins are disconnected  
32  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
100  
80  
MAX. I  
DD  
TYPICAL 5.0V I (ACTIVE)  
DD  
60  
CURRENT (mA)  
40  
20  
0
TYPICAL I (IDLE)  
DD  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
SU00988  
Figure 19. I vs. Frequency  
DD  
Valid only within frequency specification of the device under test.  
V
–0.5  
DD  
0.7V  
DD  
–0.1  
0.45V  
0.2V  
DD  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
t
CL  
SU00608A  
Figure 20. Clock Signal Waveform for I Tests in Active and Idle Modes  
DD  
t
= t  
= 5ns  
CHCL  
CLCH  
V
DD  
V
DD  
V
DD  
RST  
EA  
(NC)  
XTAL2  
XTAL1  
V
SS  
SU00585A  
Figure 21. I Test Condition, Power Down Mode  
DD  
All other pins are disconnected. V =2V to 5.5V  
DD  
33  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
EPROM CHARACTERISTICS  
Security Bits  
The XA-S3 is programmed by using a modified Improved  
Quick-Pulse Programming algorithm. This algorithm is essentially  
the same as that used by 80C51 family EPROM parts. However  
different pins are used for many programming functions.  
With none of the security bits programmed the code in the program  
memory can be verified. When only security bit 1 is programmed,  
MOVC instructions executed from external program memory are  
disabled from fetching code bytes from the internal memory. All  
further programming of the EPROM is disabled. When security bits  
1 and 2 are programmed, in addition to the above, verify mode is  
disabled. When all three security bits are programmed, all of the  
conditions above apply and all external program memory execution  
is disabled. (See Table 4.)  
Detailed EPROM programming information may be obtained from  
the Internet at www.philipsmcu.com/ftp.html.  
The XA-S3 contains three signature bytes that can be read and  
used by an EPROM programming system to identify the device. The  
signature bytes identify the device as an XA-S3 manufactured by  
Philips.  
Table 4. Program Security Bits  
PROGRAM LOCK BITS  
SB1  
U
SB2  
U
SB3  
U
PROTECTION DESCRIPTION  
1
2
No Program Security features enabled.  
P
U
U
MOVC instructions executed from external program memory are disabled from fetching code bytes  
from internal memory and further programming of the EPROM is disabled.  
3
P
P
P
P
U
P
Same as 2, also verify is disabled.  
4
Same as 3, external execution is disabled. Internal data RAM is not accessible.  
NOTES:  
1. P – programmed. U – unprogrammed.  
2. Any other combination of the security bits is not defined.  
ROM CODE SUBMISSION  
When submitting ROM code for the XA-S3, the following must be specified:  
1. 32k byte user ROM data  
2. ROM security bits.  
ADDRESS  
0000H to 7FFFH  
8020H  
CONTENT  
DATA  
BIT(S)  
COMMENT  
7:0  
0
User ROM Data  
ROM Security Bit 1  
SEC  
8020H  
SEC  
1
ROM Security Bit 2  
0 = enable security  
1 = disable security  
8020H  
SEC  
3
ROM Security Bit 3  
0 = enable security  
1 = disable security  
Trademark phrase of Intel Corporation.  
1998 Oct 06  
34  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
PLCC68: plastic leaded chip carrier; 68 leads; pedestal  
SOT188-3  
35  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
LQFP80: plastic low profile quad flat package; 80 leads; body 12 x 12 x 1.4 mm  
SOT315-1  
36  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
NOTES  
37  
1998 Oct 06  
Philips Semiconductors  
Objective specification  
XA 16-bit microcontroller  
32K/1K OTP/ROM/ROMless, 8-channel 8-bit A/D, low voltage (2.7V–5.5V),  
I C, 2 UARTs, 16MB address range  
XA-S3  
2
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make chages at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1998  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Date of release: 10-98  
Document order number:  
9397 750 04674  
Philips  
Semiconductors  
厂商 型号 描述 页数 下载

ETC

PXA.M0.5GG.NB [ CONN RCPT FMALE 5POS GOLD SOLDER ] 76 页

MARVELL

PXA1088 WCDMA / TD -SCDMA通信处理器[ WCDMA/TD-SCDMA Communication Processor ] 2 页

MARVELL

PXA168 高性能,高集成度处理器可扩展到1.2 GHz的对成本敏感的,智能消费类和嵌入式设备[ High Performance, Highly Integrated Processor Scalable to 1.2 GHz for Cost-Sensitive, Intelligent Consumer and Embedded Devices ] 2 页

INTEL

PXA210 英特尔-R PXA250和PXA210应用处理器[ Intel-R PXA250 and PXA210 Applications Processors ] 46 页

INTEL

PXA250 英特尔-R PXA250和PXA210应用处理器[ Intel-R PXA250 and PXA210 Applications Processors ] 46 页

INTEL

PXA255 PXA255处理器[ PXA255 Processor ] 40 页

INTEL

PXA270 电气,机械和热规格[ Electrical, Mechanical, and Thermal Specification ] 126 页

ACTEL

PXA270 为PXA270平台的存储解决方案[ Storage solution for PXA270 platform ] 2 页

ACTEL

PXA300 为Marvell公司的PXA300 / 310平台存储解决方案[ Storage Solution for Marvell’s PXA300/310 Platform ] 2 页

MARVELL

PXA300 可扩展性能高达624兆赫的高性价比和高能效的智能手机,嵌入式解决方案,以及手持设备[ Scalable Performance up to 624 MHz for Cost-Effective and Power-Efficient Smartphones, Embedded Solutions, and Handheld Devices ] 4 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.207189s