找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

XWM8148CFT/V

型号:

XWM8148CFT/V

描述:

12位/ 12MSPS CCD / CIS模拟前端/数字转换器[ 12-bit/12MSPS CCD/CIS Analogue Front End/Digitiser ]

品牌:

WOLFSON[ WOLFSON MICROELECTRONICS PLC ]

页数:

43 页

PDF大小:

489 K

WM8148  
12-bit/12MSPS CCD/CIS Analogue Front End/Digitiser  
Production Data, April 1999, Rev 4.0  
DESCRIPTION  
FEATURES  
Correlated double sampling  
Programmable gain amplifier  
Programmable input clamp voltage  
Offset correction  
12-bit, 12MSPS ADC  
Internal voltage reference  
12-bit or 8+4 bit data output mode  
Single 5V supply or 5V analogue/3.3V digital supply  
Programmable sample timing  
Control interface compatible with previous Wolfson  
AFEs  
The WM8148 is a 12-bit, 12MSPS analogue front end/  
digitiser IC, which interfaces to colour or monochrome linear  
array CCDs or contact image sensors (CIS). The device  
includes all the signal conditioning circuitry required to  
process the analogue signals from the CCD or CIS prior to  
the internal ADC.  
Three signal-processing channels are included in the  
device. Each channel features reset level clamping,  
correlated double sampling (CDS), offset correction and  
programmable gain amplification (PGA). The output signal  
from each channel is then multiplexed into  
a high  
48-pin TQFP package  
performance 12-bit analogue to digital converter (ADC).  
APPLICATIONS  
The reset level clamp and/or CDS functions can be selected  
or bypassed depending on the application.  
Flatbed scanners  
Document scanners  
Multi-function peripherals (MFPs)  
Colour copiers  
Character recognition systems  
Linear array CCDs  
The WM8148 can be operated in several modes. The  
operational mode of the device, including the sampling  
scheme and power management is programmed via the  
serial/parallel control interface.  
Contact image sensors (CIS)  
Output data is presented in either 12-bit parallel or byte-  
wide (8+4-bit) format.  
BLOCK DIAGRAM  
RLC  
(2)  
MCLK VSMP  
(5) (7)  
VRB VRT  
(29) (31)  
AVDD 1- 4  
(41,28,27,3)  
DVDD1-2  
(1,13)  
VRX  
(32)  
TIMING CONTROL  
VREF/BIAS  
CL RS VS  
WM8148  
CDS  
RLC  
RINP (36)  
PGA  
+
+
+
+
8
±
FULL  
OFFSET  
DAC  
(43) OEB  
.
_
.
SCALE  
2
6
12/8  
BIT  
MUX  
CDS  
RLC  
12-BIT  
ADC  
OP[11:0]  
(9-12,14-21)  
GINP (37)  
PGA  
MUX  
+
8
OFFSET  
DAC  
±
FULL  
.
_
.
SCALE  
2
6
BINP (39)  
VRLC (33)  
CDS  
RLC  
PGA  
+
8
±
FULL  
OFFSET  
DAC  
(48) PNS  
.
_
.
SCALE  
2
6
CONFIGURABLE  
SERIAL/PARALLEL  
CONTROL INTERFACE  
(34) OVRD  
(45) SDI/DNA  
(46) SCK/RNW  
(47) SEN/STB  
(42) NRESET  
(44) SDO  
4
RLC  
DAC  
(8,24,4,26)  
DGND1 - 4  
(35,40,30,25,6)  
AGND1 - 5  
Production Data contain final  
specifications current on publication date.  
Supply of products conforms to Wolfson  
Microelectronics' Terms and Conditions.  
WOLFSON MICROELECTRONICS LTD  
Lutton Court, Bernard Terrace, Edinburgh, EH8 9NX, UK  
Tel: +44 (0) 131 667 9386  
Fax: +44 (0) 131 667 5176  
Email: sales@wolfson.co.uk  
http://www.wolfson.co.uk  
1999 Wolfson Microelectronics Ltd  
.
WM8148  
Production Data  
PIN CONFIGURATION  
ORDERING INFORMATION  
DEVICE  
TEMP. RANGE  
PACKAGE  
48-pin 1mm  
thick body TQFP  
XWM8148CFT/V  
0 to 70oC  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
DVDD1  
RLC  
1
2
RINP  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AGND1  
OVRD  
VRLC  
VRX  
AVDD4  
DGND3  
3
4
MCLK  
AGND5  
VSMP  
DGND1  
OP0  
5
6
VRT  
7
AGND3  
VRB  
8
9
AVDD2  
AVDD3  
DGND4  
OP1  
10  
11  
12  
OP2  
OP3  
AGND4  
19  
13 14 15 16 17 18  
20 21 22 23 24  
PIN DESCRIPTION  
PIN  
1
NAME  
DVDD1  
RLC  
TYPE  
Supply  
DESCRIPTION  
Digital supply (3.3V to 5V) for digital inputs and SDO.  
2
Digital input  
Selects whether reset level clamp is applied, active high. If RLC is required on every  
pixel then this pin can be tied high.  
3
4
5
AVDD4  
DGND3  
MCLK  
Supply  
Ground  
Analogue supply (5V).  
Digital ground (0V).  
Digital input  
Master clock. This clock is applied at N times the input pixel rate (N = 12, 8, 6, or  
4 dependent on input sampling mode). MCLK is divided internally by N to generate  
internal clocks and to provide the clock source for digital logic.  
6
7
AGND5  
VSMP  
Ground  
Analogue ground (0V).  
Digital IO  
Video sample synchronisation pulse. This pin may be either an input (default) or output.  
Input: This signal is pulsed externally  
to synchronise the WM8148’s video  
input sample instant and the N-phase  
internal clock to CCD clocks and  
interface bus timing.  
Output: This signal is pulsed internally to  
flag the video input sample instant, to allow  
the CCD clocks and interface bus to be  
synchronised to the WM8148.  
8
DGND1  
OP0  
Ground  
Digital output  
Digital output  
Digital output  
Digital output  
Supply  
Digital ground (0V) for output drivers.  
12-bit signal data output bus. Data is output MSB on OP[11] and LSB on pin OP[0].  
See description of pins 14-21 for mode definitions.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
OP1  
OP2  
OP3  
DVDD2  
OP4  
Digital supply (3.3V-5V) for Digital IO pins and OP0 to OP3  
12-bit bi-directional data bus. On pins OP[4] to OP[11], signal data is output if OEB = 0  
and register write data is input if OEB = 1.  
Digital IO  
OP5  
Digital IO  
There are five main modes:  
OP6  
Digital IO  
Hi-Z: when OEB = 1  
OP7  
Digital IO  
Output 12-bit: twelve bit signal data output from bus  
Output 8-bit muxed: signal data output on OP[11:4] at 2 ADC conversion rate  
Input 8-bit: register write data input on OP[11:4]  
Output 8-bit: register readback data output on OP[11:4]  
OP8  
Digital IO  
OP9  
Digital IO  
OP10  
OP11  
Digital IO  
Digital IO  
PD Rev 4.0 April 1999  
WOLFSON MICROELECTRONICS LTD  
2
WM8148  
Production Data  
PIN  
NAME  
TYPE  
DESCRIPTION  
22  
NC  
No internal connection.  
23  
24  
25  
26  
27  
28  
29  
NC  
No internal connection.  
Digital ground (0V) for output drivers.  
Analogue ground (0V).  
Digital ground (0V).  
DGND2  
AGND4  
DGND4  
AVDD3  
AVDD2  
VRB  
Ground  
Ground  
Ground  
Supply  
Supply  
Analogue supply (5V).  
Analogue supply (5V).  
Analogue output Lower reference voltage. This pin must be connected to AGND and VRT via decoupling  
capacitors. See Recommended External Components section for details.  
30  
31  
AGND3  
VRT  
Ground  
Analogue ground (0V).  
Analogue output Upper reference voltage. This pin must be connected to AGND and VRB via decoupling  
capacitors. See Recommended External Components section for details.  
32  
33  
VRX  
Analogue output Input return bias voltage. This pin must be connected to AGND via decoupling  
capacitors. See Recommended External Components section for details.  
VRLC  
Analogue IO  
Selectable analogue output voltage for RLC or single-ended bias reference.  
This pin would typically be connected to AGND via a decoupling capacitor.  
See Recommended External Components section for details. VRLC can be externally  
driven if programmed Hi-Z.  
34  
OVRD  
Analogue input  
Override pin. Typically tied low externally.  
The sense of this pin defines the device function on reset. Refer to the description of  
pin 42 for details.  
35  
36  
37  
38  
39  
40  
41  
42  
AGND1  
RINP  
Ground  
Analogue ground (0V).  
Red channel input video.  
Green channel input video.  
No internal connection.  
Blue channel input video.  
Analogue ground (0V).  
Analogue supply (5V).  
Analogue input  
Analogue input  
GINP  
NC  
BINP  
Analogue input  
Ground  
AGND2  
AVDD1  
NRESET  
Supply  
Digital input  
Reset input, active low. This signal forces a reset of all internal registers.  
Registers are set to defaults if pin OVRD is tied low.  
If pin OVRD is tied high then all registers are set to defaults except EN which is set to  
1 and RLCEXT which is set to 0. This will turn on all analogue circuitry including the RLC  
DAC buffers driving the VRLC pin.  
43  
44  
OEB  
SDO  
Digital input  
Output enable control, all outputs disabled when OEB = 1.  
This pin must be externally connected.  
Digital output  
Serial Interface: register read-back,  
VSMP output, setup error flag or  
over-range flag (depending on control  
bits SDO [1:0]).  
Parallel Interface: Hi-Z, VSMP output, set-up  
error flag or over-range flag (depending on  
control bits SDO [1:0]).  
45  
46  
SDI/DNA  
Digital input  
Digital input  
Serial interface:  
serial input data signal.  
Parallel interface: High = data, Low = address.  
SCK/RNW  
Serial interface: serial clock signal.  
Parallel interface:  
High = OP[11:4] is output bus,  
Low = OP[11:4] is input bus (Hi-Z).  
47  
48  
SEN/STB  
PNS  
Digital input  
Digital input  
Serial interface: enable pulse,  
active high.  
Parallel interface: strobe, active low.  
Low = serial interface, High = parallel interface. This pin must be externally connected.  
PD Rev 4.0 April 1999  
3
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
ABSOLUTE MAXIMUM RATINGS  
Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at  
or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical  
Characteristics at the test conditions specified  
ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible  
to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage  
of this device.  
As per JEDEC specifications A112-A and A113-B, this product requires specific storage conditions prior to surface mount assembly  
and will be supplied in vacuum-sealed moisture barrier bags. It has been classified as having a Moisture Sensitivity Level of 2.  
CONDITION  
MIN  
MAX  
Analogue supply voltages: AVDD1 4  
Digital supply voltages: DVDD1 2  
Digital grounds: DGND1 4  
Analogue grounds: AGND1 5  
Digital inputs and SDO  
Digital outputs (not SDO)  
Digital IO pins  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND - 0.3V  
GND + 7V  
GND + 7V  
GND + 0.3V  
GND + 0.3V  
DVDD1 + 0.3V  
DVDD2 + 0.3V  
DVDD2 + 0.3V  
AVDD + 0.3V  
AVDD + 0.3V  
RINP, GINP, BINP  
Other pins  
Operating temperature range: TA  
Storage temperature  
0°C  
+70°C  
+150°C  
+260°C  
+183°C  
-50°C  
Lead temperature (soldering, 10 seconds)  
Lead temperature (soldering, 2 minutes)  
Notes:  
GND denotes the voltage of any ground pin. AVDD denotes the voltage applied to any AVDD pin.  
AGND and DGND pins are intended to be operated at the same potential. Differential voltages between these pins will degrade  
performance.  
RECOMMENDED OPERATING CONDITIONS  
CONDITION  
SYMBOL  
TA  
MIN  
0
TYP  
MAX  
70  
UNITS  
Operating temperature range  
Digital input and output supply voltages  
Analogue supply voltages  
°C  
V
DVDD1 2  
AVDD1 4  
2.97  
4.75  
5
5
5.25  
5.25  
V
PD Rev 4.0 April 1999  
4
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
ELECTRICAL CHARACTERISTICS  
TEST CONDITIONS  
AVDD = 4.75 to 5.25V, DVDD1 and DVDD2 = 2.97 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 48MHz unless  
otherwise stated (AVDD denotes the voltage applied to all AVDD pins).  
PARAMETER  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
Overall System Performance Including 12-bit ADC, PGA, Offset and CDS Functions  
NO MISSING CODES GUARANTEED  
Full-scale input voltage range  
Max Gain  
Gain = 1.0  
Min Gain  
0.413  
3.0  
4.13  
20  
V
V
V
Zero-scale transition error  
Full-scale transition error  
Differential non-linearity  
Integral non-linearity  
Gain = 1.0  
mV  
Gain = 1.0  
Gain = 1.0  
Gain = 1.0  
20  
0.25  
1.0  
mV  
LSB  
LSB  
DNL  
INL  
1.00  
ANALOGUE SPECIFICATION  
Input Multiplexer  
Channel to channel gain matching  
Input voltage range  
1
%
V
VIN  
0
AVDD  
References  
Upper reference voltage  
Lower reference voltage  
Input return bias voltage  
Diff. reference voltage (VRT-VRB)  
Output resistance VRT, VRB, VRX  
VRT  
VRB  
VRX  
VRTB  
3.00  
1.50  
1.50  
1.30  
3.30  
1.80  
1.75  
1.50  
2
3.60  
2.10  
2.00  
1.70  
V
V
V
V
VRT, VRB, VRX  
buffers enabled  
Resistance VRT to VRB  
VRT, VRB buffers  
disabled  
500  
800  
1100  
1
VRX Hi-Z leakage current  
VRLC/Reset-Level Clamp (RLC)  
RLC switching impedance  
VRLC Hi-Z leakage current  
VRLC DAC resolution  
VRX buffer disabled  
µA  
75  
µA  
VRLC = 0 to AVDD  
AVDD = 5V  
1
4
bits  
VRLC DAC step  
290  
333  
5
370  
mV/step  
mA  
VRLC short-circuit current  
VRLC output resistance  
VRLC = AVDD  
VRLC = 0V  
VRLC = other  
80  
80  
5
Offset DAC  
Resolution  
8
bits  
LSB  
LSB  
Differential non-linearity  
Integral non-linearity  
Output voltage  
DNL  
INL  
-0.25  
-0.50  
0.05  
0.10  
0.25  
0.50  
Code 00(hex)  
Code FF(hex)  
-200  
200  
mV  
mV  
Programmable Gain Amplifier. Monotonicity Guaranteed  
Resolution  
6
bits  
V/V  
V/V  
%
Max gain, each channel  
Min gain, each channel  
Gain error, each channel  
GMAX  
GMIN  
7.4  
0.74  
2
5
PD Rev 4.0 April 1999  
5
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
TEST CONDITIONS  
AVDD = 4.75 to 5.25V, DVDD1 and DVDD2 = 2.97 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 48MHz unless  
otherwise stated (AVDD denotes the voltage applied to all AVDD pins).  
PARAMETER  
SYMBOL  
TEST  
MIN  
TYP  
MAX  
UNIT  
CONDITIONS  
DIGITAL SPECIFICATIONS  
Digital Inputs  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
Input capacitance  
VIH  
VIL  
IIH  
0.8 DVDD1  
V
0.2 DVDD1  
V
1
1
µA  
µA  
pF  
IIL  
CI  
5
3
Digital Outputs  
High level output voltage  
VOH  
IOH = 1mA, DVDD = DVDD - 0.5  
DVDD1 or DVDD2  
V
Low level output voltage  
High impedance output current  
Output rise/fall time  
VOL  
IOZ  
IOL = 1mA  
0.5  
1
V
µA  
ns  
C
LOAD = 10pF  
Digital IO Pins  
Applied high level input voltage  
Applied low level input voltage  
High level output voltage  
Low level output voltage  
Low level input current  
VIH  
VIL  
VOH  
VOL  
IIL  
0.8 DVDD2  
DVDD2 - 0.5  
V
V
0.2 DVDD2  
IOH = 1mA  
IOL = 1mA  
V
0.5  
1
V
µA  
µA  
µA  
ns  
pF  
High level input current  
IIH  
1
High impedance output current  
Output rise/fall time  
IOZ  
1
C
LOAD = 10pF  
3
5
Input capacitance  
CI  
SUPPLY CURRENTS  
Total supply current – active  
Total analogue supply current – active  
Total digital supply current – active  
Supply current – disabled  
75  
73  
2
100  
10  
mA  
mA  
mA  
µA  
IAVDD  
IDVDD  
1
PD Rev 4.0 April 1999  
6
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
INPUT VIDEO SAMPLING (EXTERNAL VSMP)  
tP E R  
MCLK  
tV S M P H  
tV S M P S U  
VSMP  
INPUT  
tV S U  
tV H  
tR S U  
tR H  
VIDEO  
Figure 1 Input Video Timing (External VSMP)  
TEST CONDITIONS  
AVDD = 4.75 to 5.25V, DVDD1 and DVDD2 = 2.97 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 48MHz unless  
otherwise stated (AVDD denotes the voltage applied to all AVDD pins).  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MCLK period  
tPER  
20.8  
ns  
(dependent on mode selected)  
MCLK duty cycle  
45  
2
55  
%
ns  
ns  
ns  
ns  
ns  
ns  
VSMP set-up time  
VSMP hold time  
tVSMPSU  
tVSMPH  
tVSU  
5
Video level set-up time  
Video level hold time  
Reset level set-up time  
Reset level hold time  
10  
10  
10  
10  
tVH  
tRSU  
tRH  
Notes: 1. tVSU and tRSU denote the set-up time required from when the input video signal has settled.  
2. The reset sample point may be relative to either the rising or the falling edge of MCLK, depending on the setting of  
control bits RESREF[3:0].  
3. Parameters are measured at 50% of the rising/falling edge.  
PD Rev 4.0 April 1999  
WOLFSON MICROELECTRONICS LTD  
7
WM8148  
Production Data  
INPUT VIDEO SAMPLING (INTERNAL VSMP)  
tPER  
MCLK  
tVSMPPD  
tVSMPPD  
VSMP,  
OUTPUT  
tSDOPD  
tSDOPD  
SDO,  
OUTPUT  
tVSU  
tVH  
tRSU  
tRH  
VIDEO  
Figure 2 Input Video Timing (Internal VSMP)  
TEST CONDITIONS  
AVDD = 4.75 to 5.25V, DVDD1 and DVDD2 = 2.97 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 48MHz unless  
otherwise stated (AVDD denotes the voltage applied to all AVDD pins).  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MCLK period  
tPER  
20.8  
ns  
MCLK duty cycle  
45  
55  
25  
35  
%
ns  
ns  
ns  
ns  
ns  
ns  
VSMP output propagation delay  
SDO output propagation delay  
Video level set-up time  
Video level hold time  
tVSMPPD  
tSDOPD  
tVSU  
CLOAD = 10pF  
CLOAD = 10pF  
15  
20  
10  
10  
10  
10  
tVH  
Reset level set-up time  
Reset level hold time  
tRSU  
tRH  
Notes: 1.  
tVSU and tRSU denote the set-up time required from when the input video signal has settled.  
2. The reset sample point may be relative to either the rising or the falling edge of MCLK, depending on the setting of  
control bits RESREF[3:0].  
3. Parameters are measured at 50% of the rising/falling edge.  
PD Rev 4.0 April 1999  
WOLFSON MICROELECTRONICS LTD  
8
WM8148  
Production Data  
RESET LEVEL CLAMP  
MCLK  
VSMP  
tRLCSU  
tRLCH  
RLC = 0  
RLC = 1  
Figure 3 Reset Level Clamp Control Timing  
tPER  
MCLK  
tRLCPD  
tRLCPD  
MODE 8-13  
SMALL = 0  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
CL  
CL  
CL  
CL  
tRLCPD  
tRLCPD  
MODE 8-13  
SMALL = 1  
OFF  
ON  
tRLCPD  
tRLCPD  
MODE 0-5  
SMALL = 0  
OFF  
ON  
tRLCPD  
tRLCPD  
MODE 0-5  
SMALL = 1  
OFF  
ON  
Figure 4 Internal Clamp Signal (CL) Timing  
TEST CONDITIONS  
AVDD = 4.75 to 5.25V, DVDD1 and DVDD2 = 2.97 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 48MHz unless  
otherwise stated (AVDD denotes the voltage applied to all AVDD pins).  
PARAMETER  
MCLK period  
Propagation delay  
Set-up time  
SYMBOL  
tPER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
20.8  
tRLCPD  
tRLCSU  
tRLCH  
15  
ns  
10  
10  
ns  
Hold time  
ns  
Notes: 1. Internal clamp signal (CL) timing may be relative to either the falling or rising edge of MCLK depending on the setting of  
control bits RESREF[3:0].  
2. Parameters are measured at 50% of the rising/falling edge.  
PD Rev 4.0 April 1999  
9
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
OUTPUT DATA  
OEB  
tPZE  
tPEZ  
OP[11:0]  
Hi-Z  
Hi-Z  
Figure 5 Output Data Enable Timing  
MCLK  
tPD  
FDEL[1:0] = 01  
OP[11:0]  
OP[11:0]  
OP[11:0]  
OP[11:0]  
tPD  
FDEL[1:0] = 00  
DEFAULT  
tPD  
FDEL[1:0] = 10  
FDEL[1:0] = 11  
tPD  
Figure 6 Output Data Timing (Including Fine Latency Control By FDEL[1:0])  
TEST CONDITIONS  
AVDD = 4.75 to 5.25V, DVDD1 and DVDD2 = 2.97 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 48MHz unless  
otherwise stated (AVDD denotes the voltage applied to all AVDD pins).  
PARAMETER  
SYMBOL  
tPD  
TEST CONDITIONS  
MIN  
TYP  
MAX  
30  
UNITS  
ns  
Output propagation delay  
Output enable time  
Output disable time  
IOH = 1mA, IOL = 1mA  
10  
20  
tPZE  
15  
ns  
tPEZ  
15  
ns  
Note: Parameters are measured at 50% of the rising/falling edge.  
PD Rev 4.0 April 1999  
10  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
SERIAL INTERFACE  
tS P E R  
tSCKL tS C K H  
SCK  
tS S U  
tS H  
SDI  
tS C E  
tS E W tS E C  
SEN  
SDO  
tS E S D  
tS C S D  
tS C S D Z  
Figure 7 Serial Interface Timing  
TEST CONDITIONS  
AVDD = 4.75 to 5.25V, DVDD1 and DVDD2 = 2.97 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 48MHz unless  
otherwise stated (AVDD denotes the voltage applied to all AVDD pins).  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SCK period  
tSPER  
83.3  
ns  
SCK high  
tSCKH  
tSCKL  
tSSU  
20  
20  
10  
10  
20  
20  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK low  
SDI set-up time  
SDI hold time  
tSH  
SCK to SEN set-up time  
SEN to SCK set-up time  
SEN pulse width  
tSCE  
tSEC  
tSEW  
tSESD  
tSCSD  
tSCSDZ  
SEN low to SDO out  
SCK low to SDO out  
SCK low to SDO high impedance  
35  
35  
25  
Note: Parameters are measured at 50% of the rising/falling edge.  
PD Rev 4.0 April 1999  
11  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
PARALLEL INTERFACE  
tSTB  
STB  
tASU  
tAH  
tDSU  
tDH  
tSTDO  
tSTAO  
Z
Z
D[11:4]  
ADC DATA OUT  
ADDRESS IN  
DATA IN  
ADC DATA OUT  
DATA OUT  
ADC DATA OUT  
tADLS  
tADLH tADHS  
tADHH  
DNA  
tOPZ  
tOPD  
RNW  
Figure 8 Parallel Interface Timing  
TEST CONDITIONS  
AVDD = 4.75 to 5.25V, DVDD1 and DVDD2 = 2.97 to 5.25V, AGND = DGND = 0V, TA = 0 to 70°C, MCLK = 48MHz unless  
otherwise stated (AVDD denotes the voltage applied to all AVDD pins).  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RNW Low to OP[11:4] Hi-Z.  
tOPZ  
20  
ns  
Address set-up time to STB Low  
DNA Low set-up time to STB Low  
Strobe Low time  
tASU  
tADLS  
tSTB  
10  
10  
50  
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address hold time from STB High  
DNA Low hold time from STB High  
Data set-up time to STB Low  
DNA High set-up time to STB Low  
Data hold time from STB High  
Data High hold time from STB High  
RNW High to OP[11:4] output  
tAH  
tADLH  
tDSU  
tADHS  
tDH  
tADHH  
tOPD  
tSTDO  
35  
35  
Data output propagation delay from  
STB Low  
ADC data out propagation delay  
from STB High  
tSTAO  
35  
ns  
Note: Parameters are measured at 50% of the rising/falling edge.  
PD Rev 4.0 April 1999  
12  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
TYPICAL OVERALL SYSTEM PERFORMANCE  
(INCLUDING CDS, PGA AND ADC BLOCKS)  
DNL VS CODES  
INL VS CODES  
2
5.00  
4.00  
1.5  
3.00  
1
2.00  
0.5  
1.00  
0
0.00  
-1.00  
0.5  
-2.00  
-1  
-3.00  
-1.5  
-4.00  
-5.00  
-2  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
0
5
1
2
1
0
2
4
1
5
3
6
2
0
4
8
2
5
6
0
3
0
7
2
3
5
8
4
4096  
Output Data Codes  
Output Data Codes  
Figure 9 DNL Vs Output Data Codes  
Figure 10 INL Vs Output Data Codes  
(MODE 1, MCLK = 32MHz, AVDD = 5V, DVDD = 3.3V)  
(MODE 1, MCLK = 32MHz, AVDD = 5V, DVDD = 3.3V)  
GROUNDED-INPUT HISTOGRAMS  
40.57%  
1
94.36%  
RMS noise  
= 0.95 LSB  
RMS noise  
=
0.26 LSB  
1
1
0
0
0
26.49%  
20.90%  
6.34%  
N+2  
4.58%  
N-2  
2.85%  
N-1  
2.79%  
N+1  
0.63%  
N+3  
0.40%  
N-3  
0.00%  
N-2  
0.00%  
N+2  
N-1  
N
N+1  
N
Output Data Code  
Output Data Code  
Figure 11 Unity Gain Histogram  
Figure 12 Maximum Gain Histogram  
(MODE 1, MCLK = 32MHz, GAIN = 1, AVDD = 5V,  
DVDD = 3.3V)  
(MODE 1, MCLK = 32MHz, GAIN = 7.4, AVDD = 5V,  
DVDD = 3.3V)  
PD Rev 4.0 April 1999  
13  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
SYSTEM INFORMATION  
Figure 13 shows a system block diagram for a typical application. The CCD image sensor contains  
three parallel linear arrays of sensor elements (sensitive to Red, Green, and Blue light respectively).  
The Red, Green and Blue output signals are each applied to the RINP, GINP and BINP channel inputs  
respectively of the WM8148. Each of these channels provide gain adjust, for compensation of sensor  
sensitivity and offset adjust for nulling out d.c. offset voltages. The outputs of these three channels are  
time multiplexed into a single 12-bit resolution ADC. The digital output is then transferred to a digital  
ASIC or other digital processor. The corrected data can then be compressed if required before being  
output to a data storage device or a monitor.  
R
G
B
RINP  
GINP  
BINP  
BUFFER  
BUFFER  
BUFFER  
CLOCKS  
DATA  
S
E
N
S
O
R
WM8148  
SYSTEM  
ASIC  
CONTROL I/F  
SENSOR TIMING  
Figure 13 System Diagram  
PD Rev 4.0 April 1999  
14  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
DEVICE DESCRIPTION  
INTRODUCTION  
The WM8148 samples up to three analogue inputs simultaneously, conditions these signals and  
converts each resulting analogue signal to a 12-bit digital word.  
A block diagram is shown on page 1. Each of the three input channels consists of an Input Sampling  
block (CDS/RLC), an 8-bit programmable Offset DAC, and a 6-bit Programmable Gain Amplifier  
(PGA). The outputs from the three channels are multiplexed into a 12-bit ADC. The digital output from  
the ADC is presented on a 12-bit wide bi-directional bus.  
A high-speed (up to 48MHz) master clock, MCLK, and a per-pixel synchronisation pulse, VSMP, drive  
a shared Timing Control block to generate input sampling signals and other internal clocks.  
Alternatively the device can operate from MCLK only, outputting VSMP synchronisation pulses to the  
rest of the system.  
An internal reference provides buffered voltages VRT, VRB and VRX. A 4-bit DAC (RLC DAC)  
provides a programmable buffered voltage at pin VRLC for use as an input signal reference level or  
an input clamp voltage.  
The operation of the device is controlled by internal control registers, which can be read from and  
written to via a Digital Management Interface (DMI) in either serial or parallel mode.  
INPUT SAMPLING  
Figure 14 shows the configuration of the Input Sampling Block for the red channel. (The green and  
blue channels are the same.)  
RLC  
MCLK  
VSMP  
TIMING CONTROL  
RS  
From Control Interface  
CL  
VS  
+
S/H  
RINP  
To Offset DAC  
+
S/H  
-
RLC  
CDS  
INPUT SAMPLING  
BLOCK FOR RED  
CHANNEL  
MODE[0]  
VRLC  
4-BIT  
RLC DAC  
From Control Interface  
Figure 14 Input Sampling Block – Configuration for Red Channel  
This block contains switches to perform Reset Level Clamping (RLC) and Correlated Double  
Sampling (CDS). Sample/Hold blocks sample the video and reset/reference levels of the input  
waveform, and pass the difference signal on to the rest of the channel. Internal clocks VS and RS  
define the timing of the sampling of the video signal and the reset/reference level respectively. When  
enabled by control input pin RLC, internal signal CL clamps the input pin RINP to the voltage on pin  
VRLC, which is driven either externally or from the 4-bit RLC DAC.  
The detailed timing of the internal clock signals CL, VS, and RS, with respect to VSMP and MCLK, is  
controlled by the Timing Control block as programmed via the Digital Management Interface (DMI).  
PD Rev 4.0 April 1999  
15  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
INPUT SAMPLING MODES  
To suit different sensors and applications, the WM8148 can sample one, two, or three channels  
simultaneously, at the rate of the VSMP clock. In each case there are two possible ratios of VSMP  
frequency to the MCLK master clock frequency, and a choice of whether to use CDS. Table 1  
summarises the options available, including the respective maximum sample rates. The mode of  
operation is set by the Control Register bits MODE[3:0] as shown. Note MODE[0] defines whether or  
not CDS is activated.  
MAX  
MCLK/VSMP  
FREQUENCY  
RATIO  
MAX MCLK  
FREQENCY  
MAX  
OUTPUT  
RATE  
MODE  
NUMBER  
SAMPLE  
RATE PER  
CHANNEL  
(VSMP)  
(MODE[3:0])  
MSPS  
MHz  
32  
MSPS  
12  
CDS  
0
NON-  
CDS  
Three-channel  
(8-phase)  
4
8
12  
6
1
Three-channel  
(12-phase)  
4
48  
12  
8
9
Two-channel  
(6-phase)  
5.33  
6
32  
10.66  
12  
4
5
Two-channel  
(8-phase)  
8
48  
12  
2
13  
N/A  
3
One-channel  
CDS  
6.66  
10  
6
40  
6.66  
10  
One-channel  
non-CDS  
4
40  
N/A  
Table 1 Modes of Operation  
If an external VSMP signal is not available, the WM8148 can be configured to output a  
synchronisation pulse to the system by setting control bit FREE. The internally generated signal is  
presented on the VSMP and/or SDO pins depending on the settings of the control bits VSMPOP and  
SDO[1:0].  
CORRELATED DOUBLE SAMPLING (CDS)  
The input signal can be sampled in two ways: Correlated Double Sampling (CDS), or non-CDS.  
CDS operation is summarised in Figure 15. The video signal processed is the difference between the  
voltage applied at the RINP input when RS turns off and the voltage at the RINP input when VS turns  
off, i.e. the difference between reset and video levels from the same pixel of the input signal. This  
method of sampling is recommended as it removes common-mode noise.  
VRS  
VVS  
RS  
VS  
Figure 15 CDS Reset and Video Level Sampling  
In non-CDS modes, RS and VS occur simultaneously. VS samples the video signal, while RS samples  
the reference level applied to the VRLC pin. The video signal processed is the difference between  
these samples (VRS-VVS). The voltage (VVRLC), on pin VRLC, may be driven externally or internally by  
the RLC DAC. In these modes d.c. variations of the input signal are not rejected.  
PD Rev 4.0 April 1999  
16  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
RESET LEVEL CLAMPING (RLC)  
If the sensor output voltage is within the input range of the WM8148, the sensor may be d.c. coupled  
into the WM8148 either directly or via a buffer. If the output from the sensor is outside the input range  
of the WM8148, the signal has to be connected via a capacitor, CIN, and the d.c. bias conditions must  
be defined on the WM8148 side of the capacitor (at RINP).  
Setting of the d.c. bias conditions is best performed by Reset-Level Clamping, activated by pin RLC.  
Reset-Level Clamping is compatible with both CDS and non-CDS operating modes. A typical  
configuration is shown in Figure 16.  
RLC  
MCLK  
VSMP  
TIMING CONTROL  
RS  
FROM CONTROL  
INTERFACE  
CL  
VS  
CIN  
S/H  
+
TO OFFSET DAC  
+
RINP  
2
S/H  
-
1
RLC  
CDS  
INPUT SAMPLING  
BLOCK FOR RED  
CHANNEL  
MODE[0]  
EXTERNAL VRLC  
VRLC  
4-BIT  
RLC DAC  
FROM CONTROL  
INTERFACE  
Figure 16 Reset-Level Clamping Circuitry  
When the clamp pulse, CL, is active, the voltage on the WM8148 side of CIN, at RINP, will be forced  
equal to the VRLC voltage, VVRLC, by switch 1. When the CL pulse turns off, the RINP voltage will  
initially remain at VVRLC, but any subsequent variation in sensor voltage appearing at the sensor side  
of CIN will couple through CIN to RINP. Switch 2 determines whether the RS level is taken from the  
incoming signal (CDS operation) or the VRLC pin (non-CDS operation).  
Figure 17 demonstrates the case of a typical CCD waveform, with CL applied during the reset period.  
MCLK  
VSMP  
RLC  
CL  
1
X
X
0
X
X
0
X
Programmable Delay  
r,g,b  
r,g,b  
r,g,b  
No RLC on this pixel  
Input Video  
RLC on this pixel  
Figure 17 Relationship of RLC pin, MCLK and VSMP to Internal Clamp Pulse, CL  
The input signal applied to the RLC pin is sampled on the positive edge of MCLK that occurs during  
each VSMP pulse. The sampled level, high (or low) controls the presence (or absence) of the internal  
CL pulse on the next reset level. The position and duration of CL is adjustable by control bits  
RESREF[3:0] and SMALL.  
PD Rev 4.0 April 1999  
17  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
If pin RLC is tied high then reset level clamping is applied on every pixel. Alternatively, for line-by-  
line clamping, pin RLC can be driven high at the start of a line (during the dummy black pixel output),  
then driven low for the remainder of the line. If pin RLC is tied low then reset level clamping will not be  
applied.  
The VRLC voltage, to which the reset level is clamped, can be defined either by an external voltage  
or internally via the 4-bit programmable RLC DAC. To clamp to an internally defined voltage RLCEXT  
must be set to ‘0’. Control bits RLCV[3:0] then program the RLC DAC to a voltage ranging between  
0V and AVDD linearly over 15 steps. The voltage from the RLC DAC will also be presented on pin  
VRLC which should be decoupled to analogue ground. Alternatively, by setting control bit RLCEXT to  
‘1’, the RLC DAC is disconnected and the VRLC pin is driven externally to any voltage between 0V  
and AVDD.  
PROGRAMMABLE OFFSET DAC  
The output from the Input Sampling Block is added to the output of an 8-bit Offset DAC to allow  
cancellation of offsets in sensor black level and input offsets of the WM8148. The DACs cover a  
range of ±200mV in 255 equal steps of 1.57mV, programmable via the DMI. Programming 00(hex) to  
the DAC gives an offset adjustment of -200mV, FF(hex) adjusts the input signal by +200mV.  
PROGRAMMABLE GAIN AMPLIFIERS (PGA)  
When the black level has been adjusted using the Offset DAC, the gain of the PGA can be  
programmed to amplify the white level signal to cover the full ADC range (3V). Figure 18 shows a  
graph of the PGA gain response. This gain curve is non-linear, with gain given by:  
Gain = 52 / {70 – PGA[5:0](dec)}  
This gives a gain ranging from 0.74 times to 7.4 times over 63 steps, with minimum gain  
corresponding to 00(hex) and maximum gain corresponding to 3F(hex). Figure 19 shows the PGA  
gain code settings required, for PGA input voltages from 0.4V to 4.0V, to produce a PGA output  
equivalent to the full scale input range of the ADC (3V).  
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
PGA Gain code, PGA[5:0] (hex)  
PGA Gain code, PGA[5:0] (hex)  
Figure 18 PGA Gain Response  
Figure 19 PGA Input vs Gain Code for Full Scale ADC Input  
ANALOGUE TO DIGITAL CONVERTER (ADC)  
The output of the PGA is applied to a high performance ADC. The differential signal from the PGA  
ranges from 0V (black level) to either +3V or -3V (white level), depending on the polarity of the input  
signal to the device. Control bits PGAFS[1:0] are used to configure the input of the ADC to accept the  
desired input signal range. This is achieved by adding 0, + or - half of the full scale voltage to the  
ADC input signal on a channel-by-channel basis, as shown in the block diagram on page 1. Table 2  
shows the PGAFS[1:0] settings required for different video signal types.  
PD Rev 4.0 April 1999  
18  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
VIDEO SIGNAL  
TYPE  
DIFFERENTIAL  
SIGNAL RANGE  
PGAFS[1:0]  
OUTPUT CODE  
INVOP = 0  
OUTPUT CODE  
INVOP = 1  
BLACK  
WHITE  
Positive-going,  
e.g. many CIS  
0V  
3V  
11  
10  
Black = 0  
White = 4095  
Black = 4095  
White = 0  
Black = 4095  
White = 0  
Negative-going,  
e.g. CCDs  
0V  
-3V  
Black = 0  
White = 4095  
Black = 4095  
White = 0  
Bipolar  
-1.5V  
+1.5V  
00, 01  
Black = 0  
White = 4095  
Table 2 PGAFS[1:0] Setting for Video Signal Types  
If the signal exceeds the chosen range, it is clipped and the error flag OVRNG is set, which may be  
output via the SDO or OP pins.  
OVERALL SIGNAL FLOW SUMMARY  
Figure 20 represents the processing of the video signal through the WM8148.  
The INPUT SAMPLING BLOCK produces an effective input voltage V1. For CDS, this is the  
difference between the input video level VIN and the input reset level VRESET. For non-CDS this is the  
difference between the input video level VIN and the voltage on the VRLC pin, VVRLC, optionally set via  
the RLC DAC.  
The OFFSET DAC BLOCK then adds the amount of fine offset adjustment required to move the  
black level of the input signal towards 0V, producing V2.  
The PGA BLOCK then amplifies the white level of the input signal to maximise the ADC range,  
outputting voltage V3.  
The ADC BLOCK then converts the analogue signal, V3, to a 12-bit unsigned digital output, D1.  
The digital output is then inverted if required, through the OUTPUT INVERT BLOCK to produce D2.  
OUTPUT  
INVERT  
BLOCK  
INPUT  
SAMPLING  
BLOCK  
OFFSET DAC PGA  
BLOCK BLOCK  
ADC BLOCK  
D2  
x 4095/V FS) =  
V3  
V1  
V2  
V3  
D1  
+0 codes if PGAFS[1:0]=11  
+4095 codes if PGAFS[1:0]=10  
+2047 codes if PGAFS[1:0]=0x  
X
+
OP[11:0]  
+
VIN  
digital  
analog  
+
-
MODE[0] = 0  
VRESET  
D2 = D1 if INVOP = 0  
D2 =4095-D1 if INVOP = 1  
PGA gain  
A = 52/(70-PGA[5:0])  
MODE[0] = 1  
VVRLC  
Offset  
DAC  
200mV*(DAC[7:0]-127.5)/127.5  
VIN is RINP or GINP or BINP  
VRESET is V IN sampled during reset clamp  
VRLC is voltage applied to VRLC pin  
RLCEXT=1  
RLCEXT=0  
MODE[0], RLCEXT,RLCV[3:0], DAC[7:0],  
PGA[5:0], PGAFS[1:0] and INVOP are set  
by programming internal control registers.  
MODE[0]=0 for CDS, 1 for non-CDS  
RLC  
DAC  
AVDD*RLCV[3:0]/15  
Figure 20 Overall Signal Flow  
PD Rev 4.0 April 1999  
19  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
CALCULATING OUTPUT FOR ANY GIVEN INPUT  
The following equations describe the processing of the video and reset level signals through the  
WM8148.  
INPUT SAMPLING BLOCK: INPUT SAMPLING AND REFERENCING  
If MODE[0] = 0, (i.e. CDS operation) the previously sampled reset level, VRESET, is subtracted from  
the input video.  
V1  
=
VIN - VRESET  
Eqn. 1  
If MODE[0] = 1, (non-CDS operation) the simultaneously sampled voltage on pin VRLC is subtracted  
instead.  
V1  
=
VIN - VVRLC  
Eqn. 2  
If RLCEXT = 1, VVRLC is an externally applied voltage on pin VRLC.  
If RLCEXT = 0, VVRLC is the output from the internal RLC DAC.  
VVRLC  
=
AVDD RLCV[3:0] / 15  
Eqn. 3  
Eqn. 4  
Eqn. 5  
OFFSET DAC BLOCK: OFFSET (BLACK-LEVEL) ADJUST  
The resultant signal V1 is added to the Offset DAC output.  
V2  
=
V1 + 200mV (DAC[7:0]-127.5) / 127.5  
PGA NODE: GAIN ADJUST  
The signal is then multiplied by the PGA gain,  
V3  
=
V2 52/(70- PGA[5:0])  
ADC BLOCK: ANALOGUE-DIGITAL CONVERSION  
The analogue signal is then converted to a 12-bit unsigned number, with input range configured by  
PGAFS[1:0].  
D1[11:0] = INT{ (V3 /VFS  
D1[11:0] = INT{ (V3 /VFS  
D1[11:0] = INT{ (V3 /VFS  
)
)
)
4095} + 2047  
4095}  
PGAFS[1:0] = 00 or 01  
PGAFS[1:0] = 11  
Eqn. 6  
Eqn. 7  
Eqn. 8  
4095} + 4095  
PGAFS[1:0] = 10  
where the ADC full-scale range, VFS, = 3V.  
OUTPUT INVERT BLOCK: POLARITY ADJUST  
The polarity of the digital output may be inverted by control bit INVOP.  
D2[11:0] = D1[11:0]  
(INVOP = 0)  
(INVOP = 1)  
Eqn. 9  
D2[11:0] = 4095 – D1[11:0]  
Eqn. 10  
OUTPUT DATA FORMAT  
MULTIPLEXED AND NON-MULTIPLEXED OUTPUT FORMAT  
Data is output from the device, by default, as a 12-bit wide word on OP[11:0]. The output changes on  
every Nth negative-going edge of MCLK where N = 2, 4, or 6 according to the video sampling mode.  
This is shown as byte C in Figure 21.  
If control bit MUXOP is set high, data is output in a 2 x 8-bit word format, with data changing every  
Nth negative-going edge of MCLK, where N = 1, 2, or 3 according to video sampling mode. This is  
shown as bytes A and B in Figure 21. Data is presented on pins OP[11:4] at twice the output pixel  
rate. Bits CC[1] and CC[0] are used to indicate which channel the ADC input was taken from. Table 3  
shows the channels corresponding to the CC[1:0] bit values. Bits TVIOL and OVRNG of byte B are  
Error Flags, these are described below.  
PD Rev 4.0 April 1999  
20  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
OP[11:4]  
MUXOP=1  
A
B
OP[11:0]  
MUXOP=0  
C
Figure 21 Output Data for 2 x 8-bit and 12 bit Output.  
Where:  
A = < d11, d10, d9, d8, d7, d6, d5, d4 >  
B = < d3, d2, d1, d0, TVIOL, CC[1], CC[0], OVRNG >  
C = < d11, d10, … d1, d0 >  
COLOUR CODE BITS  
CHANNEL  
CC[1]  
CC[0]  
0
0
1
0
1
0
Red  
Green  
Blue  
Table 3 Colour Code Bits CC[1:0]  
ERROR FLAGS  
The two error flags are:  
TVIOL: This goes high if the reset sample and clamp positions set up in bits RESREF[3:0], are  
inconsistent with the selected mode of operation.  
OVRNG: This goes high if the input to the ADC exceeds its input range.  
These flags are output in byte B of multiplexed-mode parallel output data as above. Each is also  
available via the SDO pin if so configured via the SDO[1:0] register bits.  
LATENCY  
Default latency from the last rising edge of MCLK during the VSMP pulse to data output depends on  
the chosen Input Sampling Mode. To align pixel outputs with post processing circuitry and to reduce  
interaction with video sampling instances, the latency through the WM8148 device can be adjusted  
by Control bits DEL[1:0] and FDEL[1:0].  
DIGITAL MANAGEMENT INTERFACE (DMI)  
The DMI is used to write contents to and read back contents from the internal registers in either serial  
or parallel mode. The PNS pin is tied low for serial and high for parallel mode.  
SERIAL INTERFACE  
REGISTER WRITE  
SCK  
a5  
0
a3  
a2  
a1  
a0  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
SDI  
Address  
Data Word  
SEN  
Figure 22 Serial Interface Register Write  
PD Rev 4.0 April 1999  
21  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
Figure 22 shows register writing in serial mode. Three pins, SCK, SDI and SEN are used. A six-bit  
address (a5, 0, a3, a2, a1, a0) is clocked in through SDI, MSB first, followed by an eight-bit data word  
(b7, b6, b5, b4, b3, b2, b1, b0), also MSB first. Each bit is latched on the rising edge of SCK. When  
the data has been shifted into the device, a pulse is applied to SEN to transfer the data  
to the appropriate internal register. Note all valid registers have address bit a4 equal to 0 in  
write mode.  
REGISTER READ-BACK  
SCK  
a5  
1
a3 a2 a1 a0  
x
x
x
x
x
x
x
x
SDI  
SEN  
SDO  
Address  
Data Word  
d7 d6 d5 d4 d3 d2 d1 d0  
Output Data Word  
OEB  
Figure 23 Serial Interface Register Read-back  
Register read-back is initiated by writing to the serial bus as described, but with address bit a4 set to  
1, followed by an 8-bit dummy data word. Writing address (a5, 1, a3, a2, a1, a0) will cause the  
contents (d7, d6, d5, d4, d3, d2, d1, d0) of corresponding register (a5, 0, a3, a2, a1, a0) to be output  
MSB first on pin SDO (on the falling edge of SCK), provided control bits SDO[1:0] = 00. If SDO[1:0] is  
not set to 00 then error flags will be output instead of the register contents. Note that if SDI and SDO  
are not connected together, the next word may be read in to SDI while the previous word is still being  
output on SDO. Alternatively, the user may tie the SDI and SDO pins together to make a 3-wire serial  
interface. The user must ensure that the circuit driving SDI is Hi-Z while the SDO pin is active.  
Pin OEB must be low to enable the output data word to be output.  
PARALLEL INTERFACE  
REGISTER WRITE  
STB  
OP[11:4]  
DNA  
Driven Externally  
Driven by WM8148  
Normal Output Data  
Driven by WM8148  
Normal Output Data  
Hi-Z  
Hi-Z  
Address  
Data  
RNW  
Figure 24 Parallel Interface Register Write  
The parallel interface uses bits [11:4] of the OP bus and the STB, DNA and RNW pins. Pin RNW  
must be low during a write operation. The DNA pin defines whether the data byte is address (low) or  
data (high). The 6-bit address (a5, 0, a3, a2, a1, a0) is input into OP[9:4], LSB into OP[4], (OP[10]  
and OP[11] are ignored) when DNA is low, then the 8-bit data word is input into OP[11:4], LSB into  
OP[4], when DNA is high. The data bus OP[11:4] for both address and data is latched in during the  
low period of STB. Note all valid registers have address bit a4 equal to 0.  
PD Rev 4.0 April 1999  
22  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
REGISTER READ-BACK  
STB  
Driven by WM8148  
Driven by WM8148  
Normal Output Data  
Driven Externally  
Address  
Hi-Z  
Hi-Z  
Normal Output Data  
OP[11:4]  
Read Data  
DNA  
RNW  
Figure 25 Parallel Interface Register Read-back  
Register read-back is initiated by writing the 6-bit address (a5, 1, a3, a2, a1, a0) into OP[9:4] by  
pulsing the STB pin low. Note that a4 = 1 and pins RNW and DNA are low. When RNW and DNA are  
high and STB is strobed again, the contents (d7, d6, d5, d4, d3, d2, d1, d0) of the corresponding  
register (a5, 0, a3, a2, a1, a0) will be output on OP[11:4], LSB on pin OP[4]. Until STB is pulsed low,  
the current contents of the ADC (shown as Normal Output Data) will be present on OP[11:4].  
OUTPUT ENABLE  
When high, pin OEB makes pins OP[11:0] Hi-Z regardless of other pin settings. Therefore when the  
WM8148 is outputting normal ADC data, or during register read, pin OEB must be set to ‘0’. During  
register write, pin RNW set to ‘0’ ensures that the outputs are Hi-Z, therefore pin OEB is ‘don’t care’.  
Table 4 shows the state of pins OP[11:0] for possible settings of OEB, RNW and STB.  
OEB  
RNW  
STB  
OP[11:0]  
Hi-Z  
1
x
0
0
x
0
1
1
x
x
0
1
Hi-Z  
Read register data  
Read ADC data  
Table 4 State of OP[11:0] During Register Read/Write  
POWER MANAGEMENT  
Power management for the WM8148 is performed via the DMI. The device can be powered on or off  
completely by the control bit EN. Alternatively, when control bit SELEN is high, only blocks selected  
by further control bits SENBL[7:0] are powered up. This allows the user to optimise power dissipation  
in certain modes, or to define intermediate standby modes to allow a quicker recovery into a fully  
active state.  
EN  
0
SELEN  
0
0
1
Device completely powers down.  
Device completely powers up.  
1
x
Only blocks with respective SENBL bit high  
go/remain active.  
Table 5 Power Down control  
Control bit RLCEXT is used to disable the RLC DAC, regardless of EN or SENBL[7:0]. If this option is  
taken, pin VRLC can be driven externally for reset level clamping.  
One-channel and Two-channel sampling modes do not automatically power down unused PGAs, the  
appropriate SENBL bits should be set during initialisation to save power. The WM8148 will still  
operate normally if the unused blocks are not powered down.  
All the internal registers maintain their previously programmed value in power down modes, and the  
DMI inputs remain active.  
PD Rev 4.0 April 1999  
23  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
REGISTER RESET  
RESET ON POWER UP  
To set the registers to their default values, pin NRESET must be held low during power-up. If pin  
OVRD is also held low, all of the registers will be set to their default values including bits SELEN and  
EN which will disable all of the analogue circuitry. If pin OVRD is held high during power up with pin  
NRESET held low, all of the registers will be set to their default value with the exception of EN and  
RLCEXT, which will enable all of the analogue circuitry in the device.  
RESET DURING OPERATION  
During device operation, pulsing NRESET low will reset all of the registers depending on the polarity  
of the OVRD pin as above.  
The registers may also be reset by writing to bits SRES[1:0]. This allows reset of:  
1) Only the PGA Gains and Offset DAC Values registers,  
2) All registers except power-management registers SELEN, EN, and SENBL, or  
3) All registers, equivalent to the NRESET function.  
REFERENCE VOLTAGES  
The ADC reference voltages are derived from an internal bandgap reference, and buffered to  
pins VRT and VRB, where they must be decoupled to ground. Pin VRX is driven by a similar buffer,  
and also requires decoupling. The output buffer from the RLC DAC also requires decoupling at  
pin VRLC.  
Peak sink and source currents of the reference buffers are typically between ±1mA and ±6mA,  
depending on output voltage and current polarity. This limits the slew-rate into the decoupling  
capacitors on power-up. When disabled, the buffers become high-impedance (I < 1µA), so the  
decoupling capacitor voltage will not drop much during short (< 100ms) disable durations.  
DETAILED MODE TIMING DIAGRAMS  
The following diagrams show Input Signal Sampling Diagrams, Output Data Timing and Reset  
Sample/Clamp Positions for each mode of the WM8148.  
INPUT SIGNAL SAMPLING DIAGRAMS  
These diagrams show the required MCLK and VSMP (externally or internally generated) signals.  
From these signals, internally generated signals VS and RS are used to sample the video and reset  
levels (in CDS modes) respectively. In non-CDS modes, the reference level is sampled  
simultaneously with VS. The position of the sampling point is indicated by the vertical lines which run  
from the sensor output waveform to the respective VS or RS sampling points, and by the inclusion of  
the arrow on the falling edge of the VS or RS pulse. Also shown is MCLK timing, which counts the  
number of MCLK periods in total, and MCLK phase, which counts the number of MCLK periods  
between each VSMP pulse. Note that the duration of the VSMP pulse must not include more than  
one MCLK rising edge, as this will reset the phase timing. The output waveforms are included. The  
position of the RS pulse is programmable, therefore the RESREF[3:0] position for each diagram has  
been included.  
OUTPUT DATA TIMING DIAGRAMS  
The output timing diagrams are used to calculate the latency through the device, which is dependent  
on the operating mode. The latency can be programmed using the DEL[1:0] bits in setup register 4.  
Output timing and latency does not depend on the RESREF[3:0] control bits. As an example, Figures  
26 and 27 show that a sample taken on the rising edge of MCLK at time 1, will emerge from the  
device on the falling edge of MCLK at time 19, i.e. a latency of 18.5 MCLK periods (DEL = 00).  
RESET SAMPLE/CLAMP POSITIONS  
In CDS modes, control bits RESREF[3:0] control the position of the reset sampling point, RS, and the  
clamp pulse point, CL, if reset level clamping is selected. In non-CDS modes, control bits  
RESREF[3:0] control the position of CL only, if reset level clamping is selected. These diagrams  
show the positions to which the sampling or clamping pulse can be adjusted for each mode. Care  
must be taken to adjust the RS position to one that will ensure that the reset sample and/or clamp  
point will be taken at the most appropriate moment during the reset portion of the input signal.  
PD Rev 4.0 April 1999  
24  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
THREE-CHANNEL (8-PHASE) – MODES 0 AND 1  
Reset  
Video  
Reset  
Video  
CCD  
Outputs  
-4  
4
-3  
5
-2  
6
-1  
7
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
0
9
1
Time (MCLK)  
Phase  
MCLK  
VSMP  
VS  
RS /CL (RESREF=4)  
O/P (DEL=00)  
O/P (DEL=01)  
O/P (DEL=10)  
O/P (DEL=11)  
Figure 26 Modes 0 and 1 Input Signal Sampling  
Reset  
Video  
Reset  
Video  
CCD  
Outputs  
19  
3
20  
4
21  
5
22  
6
23  
7
24  
0
25  
1
26  
2
27  
3
28  
4
29  
5
30  
6
31  
7
32  
0
33  
1
2
2
Time (MCLK)  
Phase  
MCLK  
VSMP  
VS  
RS /CL (RESREF=4)  
O/P (DEL=00)  
R
G
B
R
G
R
B
O/P (DEL=01)  
O/P (DEL=10)  
O/P (DEL=11)  
G
R
B
G
B
Figure 27 Modes 0 and 1 Output Data Timing  
PD Rev 4.0 April 1999  
25  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
Phase  
MCLK  
VSMP  
VS  
CL (RESREF=0)  
CL (RESREF=1)  
(RESREF=2)  
R
R
S/CL  
S/CL (RESREF=3)  
RS/CL  
(RESREF=4)  
(RESREF=5)  
R
R
S/CL  
S/CL (RESREF=6)  
RS/CL  
(RESREF=7)  
(RESREF=8)  
(RESREF=9)  
(RESREF=10)  
R
R
S/CL  
S/CL  
RS/CL  
Invalid RESREF positions in CDS Mode (Mode 0)  
Figure 28 Modes 0 and 1 Reset Sample/Clamp Positions  
PD Rev 4.0 April 1999  
26  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
ONE-CHANNEL CDS – MODE 2  
Reset  
Video  
Reset  
Video  
Reset  
CCD  
Outputs  
-4  
2
-3  
3
-2  
4
-1  
5
0
0
1
1
2
2
3
3
4
4
5
5
6
0
7
1
8
2
9
3
Time (MCLK)  
Phase  
MCLK  
VSMP  
VS  
RS (RESREF=2)  
O/P (DEL=00)  
O/P (DEL=01)  
O/P (DEL=10)  
O/P (DEL=11)  
Figure 29 Mode 2 Input Signal Sampling  
Reset  
Video  
Reset  
Video  
Reset  
CCD  
Outputs  
49  
1
50  
2
51  
3
52  
4
53  
5
54  
0
55  
1
56  
2
57  
3
58  
4
59  
5
60  
0
61  
1
62  
2
Time (MCLK)  
Phase  
MCLK  
VSMP  
VS  
RS (RESREF=2)  
O/P (DEL=00)  
O/P (DEL=01)  
O/P (DEL=10)  
O/P (DEL=11)  
R G B  
R G B  
R G B  
R G B  
Figure 30 Mode 2 Output Data Timing  
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
Phase  
MCLK  
VSMP  
VS  
RS /CL (RESREF=2)  
RS /CL (RESREF=3)  
RS /CL (RESREF=4)  
RS /CL (RESREF=5)  
RS /CL (RESREF=6)  
Figure 31 Mode 2 Reset Sample/Clamp Positions  
PD Rev 4.0 April 1999  
27  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
ONE-CHANNEL NON-CDS – MODE 3  
Video  
Video  
Video  
CCD  
Output  
-4  
0
-3  
1
-2  
2
-1  
3
0
0
1
1
2
2
3
3
4
0
5
1
6
2
7
3
Time (MCLK)  
Phase  
MCLK  
VSMP  
VS  
CL (RESREF=0)  
O/P (DEL=00)  
O/P (DEL=01)  
O/P (DEL=10)  
O/P (DEL=11)  
Figure 32 Mode 3 Input Signal Sampling  
Video  
Video  
Video  
CCD  
Outputs  
34  
2
35  
3
36  
0
37  
1
38  
2
39  
3
40  
0
41  
1
42  
2
43  
3
44  
0
45  
1
Time (MCLK)  
Phase  
MCLK  
VSMP  
VS  
CL (RESREF=0)  
O/P (DEL=00)  
O/P (DEL=01)  
O/P (DEL=10)  
O/P (DEL=11)  
R G B  
R G B  
R G B  
R G B  
Figure 33 Mode 3 Output Data Timing  
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
MCLK  
VSMP  
VS  
CL (RESREF=0)  
CL (RESREF=1)  
CL (RESREF=2)  
Figure 34 Mode 3 Reset Sample/Clamp Positions  
WOLFSON MICROELECTRONICS LTD  
PD Rev 4.0 April 1999  
28  
WM8148  
Production Data  
TWO-CHANNEL (6-PHASE) – MODES 4 AND 5  
Reset  
Video  
Reset  
Video  
Reset  
CCD  
Outputs  
-4  
2
-3  
3
-2  
4
-1  
5
0
0
1
1
2
2
3
3
4
4
5
5
6
0
7
1
8
2
9
3
Time (MCLK)  
Phase  
MCLK  
VSMP  
VS  
RS /CL (RESREF=2)  
O/P (DEL=00)  
O/P (DEL=01)  
O/P (DEL=10)  
O/P (DEL=11)  
Figure 35 Modes 4 and 5 Input Signal Sampling  
Reset  
Video  
Reset  
Video  
CCD  
Outputs  
19  
1
20  
2
21  
3
22  
4
23  
5
24  
0
25  
1
26  
2
27  
3
28  
4
29  
5
30  
0
31  
1
32  
2
Time (MCLK)  
Phase  
MCLK  
VSMP  
VS  
RS /CL (RESREF=2)  
O/P (DEL=00)  
O/P (DEL=01)  
O/P (DEL=10)  
O/P (DEL=11)  
R
G
R
G
R
G
R
G
Figure 36 Modes 4 and 5 Output Data Timing  
4
5
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
MCLK  
VSMP  
VS  
CL (RESREF=0)  
CL (RESREF=1)  
RS /CL (RESREF=2)  
RS /CL (RESREF=3)  
RS /CL (RESREF=4)  
RS /CL (RESREF=5)  
RS /CL (RESREF=6)  
Invalid RESREF positions in CDS mode (Mode 4)  
Figure 37 Modes 4 and 5 Reset Sample/Clamp Positions  
WOLFSON MICROELECTRONICS LTD  
PD Rev 4.0 April 1999  
29  
WM8148  
Production Data  
THREE CHANNEL (12-PHASE) – MODES 8 AND 9  
Reset  
Video  
Reset  
CCD  
Outputs  
5
5
-6  
6
-5  
7
-4  
8
-3  
9
-2  
10  
-1  
11  
0
0
1
1
2
2
3
3
4
4
6
6
7
7
8
8
9
9
10  
10  
11  
11  
12  
0
13  
1
Time (MCLK)  
Phase  
MCLK  
VSMP  
VS  
RS /CL (RESREF=6)  
O/P (DEL=00)  
O/P (DEL=01)  
O/P (DEL=10)  
O/P (DEL=11)  
Figure 38 Modes 8 and 9 Input Signal Sampling  
CCD  
Outputs  
33 34  
10  
35 36 37 38  
11  
39 40 41 42  
43 44 45 46  
10  
47 48 49 50 51 52 53 54 55 56 57 58 59  
11 10 11  
Time (MCLK)  
Phase  
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
MCLK  
VSMP  
VS  
RS /CL (RESREF=6)  
O/P (DEL=00  
O/P (DEL=01)  
O/P (DEL=10)  
O/P (DEL=11)  
R
G
R
B
G
R
B
G
R
B
G
B
Figure 39 Modes 8 and 9 Output Data Timing  
PD Rev 4.0 April 1999  
30  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
10 11  
0
1
2
3
4
5
6
7
8
9
10 11  
0
1
2
3
4
5
MCLK  
VSMP  
VS  
CL (RESREF=0)  
CL (RESREF=1)  
RS /CL (RESREF=2)  
S /CL (RESREF=3)  
RS /CL (RESREF=4)  
R
R
R
S /CL (RESREF=5)  
S /CL (RESREF=6)  
RS /CL (RESREF=7)  
S /CL (RESREF=8)  
RS /CL (RESREF=9)  
R
R
S /CL (RESREF=10)  
RS /CL (RESREF=11)  
RS /CL (RESREF=12)  
RS /CL (RESREF=13)  
RS /CL (RESREF=14)  
Invalid RESREF positions in CDS mode (Mode 8)  
Figure 40 Modes 8 and 9 Reset Sample/Clamp Positions  
PD Rev 4.0 April 1999  
31  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
TWO-CHANNEL (8-PHASE) – MODES 12 AND 13  
Reset  
Video  
Reset  
Video  
Reset  
CCD  
Outputs  
-6  
2
-5  
3
-4  
4
-3  
5
-2  
6
-1  
7
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
0
9
1
10  
2
11  
3
12  
4
13  
5
Time (MCLK)  
Phase  
MCLK  
VSMP  
VS  
RS /CL (RESREF=2)  
O/P (DEL=00)  
O/P (DEL=01)  
O/P (DEL=10)  
O/P (DEL=11)  
Figure 41 Modes 12 and 13 Input Signal Sampling  
Reset  
Video  
Reset  
Video  
Reset  
Video  
CCD  
Outputs  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  
Time (MCLK)  
Phase  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
MCLK  
VSMP  
VS  
RS /CL (RESREF=2)  
O/P (DEL=00  
O/P (DEL=01)  
O/P (DEL=10)  
O/P (DEL=11)  
R
G
R
G
R
G
R
G
Figure 42 Modes 12 and 13 Output Data Timing  
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
MCLK  
VSMP  
VS  
CL (RESREF=0)  
RS/CL (RESREF=1)  
RS /CL (RESREF=2)  
RS /CL (RESREF=3)  
RS /CL (RESREF=4)  
RS /CL (RESREF=5)  
RS /CL (RESREF=6)  
Invalid RESREF positions in CDS mode (Mode 12)  
Figure 43 Modes 12 and 13 Reset Sample/Clamp Positions  
PD Rev 4.0 April 1999  
32  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
DEVICE CONFIGURATION  
The following section details the Control Register Map, the contents of which determines the  
operation of the WM8148, and the Control Bit table, which describes the possible settings of each of  
the bits in the Control Register Map.  
INTERNAL REGISTER DEFINITION  
Table 6 details the internal register contents.  
SET-UP REGISTER 1  
Selects global power on/off or selective enable.  
Selects the function of the SDO pin.  
Controls input sampling mode the device is operating in.  
SET-UP REGISTER 2  
Enables individual sections of the device such as sample and hold blocks or PGA.  
SET-UP REGISTER 3  
Sets the clamp and reset sample position in CDS modes.  
Sets the clamp position in non-CDS modes.  
Enables the internal clocks to be free running without VSMP.  
Allows the video and reset sample pulse widths to be reduced by half an MCLK period.  
Selects the channel that the sample is taken from in One-Channel (or line by line) modes.  
SOFTWARE RESET  
Writing to this register causes the device to reset. Three different reset types are available.  
See Control Bit Description Table for details.  
SET-UP REGISTER 4  
Allows the latency through the device to be adjusted by ADC clock periods and by half-MCLK  
periods.  
Enables VSMP as input or output.  
Allows the external setting of RLC bias reference voltage.  
Controls parallel/multiplexed output format.  
Defines the polarity of the output data.  
COARSE OFFSETS  
Controls the non-CDS reference voltage level or reset clamp level.  
Allows external reference to be used as reset clamp level.  
Adjusts the d.c. level of the PGA outputs to align with the ADC input range to suit different input  
video signal polarities.  
REVISION NUMBER  
Allows the user to check which revision of the device is being used.  
DAC VALUES  
Programmes the amount of offset applied to the input of each PGA. Table 7 describes the  
sub-address bits for each channel.  
PGA GAINS  
Programmes the gain of each PGA. Table 7 describes the sub-address bits for each channel.  
PD Rev 4.0 April 1999  
33  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
ADDRESS DESCRIPTION DEFAULT RW  
BIT  
<A5:A0>  
(HEX)  
80  
B7  
MODE[3]  
SENBL[7]  
CHAN[1]  
0
B6  
MODE[2]  
SENBL[6]  
CHAN[0]  
0
B5  
MODE[1]  
SENBL[5]  
SMALL  
0
B4  
MODE[0]  
SENBL[4]  
FREE  
B3  
B2  
B1  
B0  
EN  
000001 Setup Register 1  
000010 Setup Register 2  
000011 Setup Register 3  
000100 Software Reset  
000101 Setup Register 4  
000110 Coarse Offsets  
000111 Revision Number  
RW  
RW  
RW  
W
SDO[1]  
SENBL[3]  
SDO[0]  
SENBL[2]  
SELEN  
00  
SENBL[1]  
SENBL[0]  
06  
RESREF[3] RESREF[2] RESREF[1] RESREF[0]  
00  
0
0
0
SRES[1]  
DEL[1]  
SRES[0]  
DEL[0]  
00  
RW  
RW  
R
INVOP  
0
MUXOP  
PGAFS[1]  
REV[6]  
0
VSMPOP  
RLCEXT  
REV[4]  
FDEL[1]  
RLCV[3]  
REV[3]  
FDEL[0]  
RLCV[2]  
REV[2]  
1B  
43  
PGAFS[0]  
REV[5]  
RLCV[1]  
REV[1]  
RLCV[0]  
REV[0]  
REV[7]  
1000XY DAC Values  
1010XY PGA Gains  
80  
00  
RW  
RW  
DAC[7]  
0
DAC[6]  
0
DAC[5]  
PGA[5]  
DAC[4]  
PGA[4]  
DAC[3]  
PGA[3]  
DAC[2]  
PGA[2]  
DAC[1]  
PGA[1]  
DAC[0]  
PGA[0]  
Note: Register address 000000 is reserved and should not be written to.  
Table 6 Control Register Map  
ADDRESS LSB DECODE  
Red register  
X
0
0
1
1
Y
0
1
0
1
Green register  
Blue register  
Red, Green, and Blue registers  
Table 7 Red, Green, Blue, Sub-address Bits  
CONTROL BIT DESCRIPTION  
CONTROL  
BIT/WORD  
DEFAULT  
DESCRIPTION  
Set-up Register 1  
Address  
000001  
EN  
SELEN b1  
b0  
0
0
Global power on/off or selective enable.  
SELEN  
EN  
0
1
0
0
1
Complete power down (default).  
Complete power on.  
Individual block power on/off (X denotes either 1 or 0)  
see SENBL[7:0] register description for details.  
X
SDO[1:0]  
b3, b2  
00  
Multiplexes SDO output pin.  
SDO[1]  
SDO[0]  
0
0
1
1
0
1
0
1
Register readback when requested, Hi-Z otherwise  
TVIOL flag (RESREF inconsistent with MODE).  
ADC over-range flag.  
VSMP synchronous output.  
MODE[3:0]  
b7, b6, b5, b4  
1000  
Device mode control bits.  
MODE[3] MODE[2] MODE[1] MODE[0]  
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
Three-channel (8-phase) CDS  
Three-channel (8-phase) non-CDS  
One-channel CDS  
One-channel non-CDS  
Two-channel (6-phase) CDS  
Two-channel (6-phase) non-CDS  
Three-channel (12-Phase) CDS  
Three-channel (12-Phase) non-CDS  
Two-channel (8-Phase) CDS  
Two-channel (8-Phase) non-CDS  
PD Rev 4.0 April 1999  
WOLFSON MICROELECTRONICS LTD  
34  
WM8148  
Production Data  
CONTROL  
DEFAULT  
DESCRIPTION  
BIT/WORD  
Set-up Register 2  
Address  
000010  
SENBL[7:0]  
b7…..b0  
0000  
0000  
Selective power enable register, activated when SELEN = 1 (Set-up Register 1).  
Each bit activates respective cell when 1, de-activates when 0.  
SENBL[0]  
SENBL[1]  
SENBL[2]  
SENBL[3]  
SENBL[4]  
SENBL[5]  
SENBL[6]  
SENBL[7]  
Bandgap/Bias  
VRT, VRB buffers  
VRX buffer  
RLC DAC (allows VRLC to be externally driven)  
Red S/H, PGA  
Green S/H, PGA  
Blue S/H, PGA  
ADC  
Set-up Register 3  
Address  
000011  
RESREF[3:0]  
b3, b2, b1, b0  
0110  
Selects the position of either the reset sample and the clamp points in CDS modes,  
or the position of just the clamp pulse in non-CDS modes. See Mode Descriptions for  
further details.  
FREE  
b4  
0
Enables internal clocks to be free running, without VSMP pulse input.  
FREE  
0
1
Requires continuous VSMP pulse input every N periods of MCLK  
Free running  
SMALL  
b5  
0
Reduces video and reset sample pulse widths by half an MCLK period.  
SMALL  
0
1
Default pulse widths  
Reduces pulse widths  
CHAN[1:0]  
b7, b6  
00  
Selects the input channel in One-channel (line by line) modes.  
No effect when not in One-channel mode.  
CHAN[1] CHAN[0]  
0
0
1
1
0
1
0
1
Red channel  
Green channel  
Blue channel  
Reserved  
Software Reset  
Address  
000100  
SRES[1:0]  
b1, b0  
00  
Writing to this register causes a software reset. There a three types of reset available:  
SRES[1] SRES[0]  
0
0
0
1
Same action as NRESET pin  
Resets all registers to default including RLCEXT.  
(Except EN, SELEN and SENBL[7:0], which are  
not changed)  
1
X
Resets PGA and DAC only (X denotes either 1 or 0)  
Setup Register 4  
Address  
000101  
DEL[1:0]  
b1, b0  
00  
Adjusts the latency through the device in ADC clock periods.  
See Detailed Mode Timing Diagrams for details.  
FDEL[1:0]  
b3, b2  
00  
Adjusts the latency through the device in half-MCLK increments.  
FDEL[1]  
FDEL[0]  
0
0
1
1
0
1
0
1
Default position  
Earlier by MCLK/2  
Later by MCLK/2  
Later by MCLK/2  
Invalid in modes 0, 1, 4 and 5  
Invalid in modes 0, 1, 4 and 5  
In these invalid modes, output data is held constant, TVIOL is not flagged.  
Enables output of internally generated MCLK/N sync pulse (only if FREE also set).  
VSMPOP  
VSMPOP  
b4  
0
0
0
1
Requires external VSMP  
VSMP pin becomes sync output  
b5  
Reserved for Wolfson use only, must be programmed to 0.  
PD Rev 4.0 April 1999  
35  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
CONTROL  
DEFAULT  
DESCRIPTION  
BIT/WORD  
MUXOP  
b6  
0
Changes the data output format from 12-bit parallel to 2 x 8 bit multiplexed.  
MUXOP  
0
1
12-bit wide parallel data  
8-bit wide multiplexed data  
INVOP  
b7  
0
Digitally inverts the polarity of output data.  
INVOP  
0
1
Negative-going video gives negative-going output data  
Negative-going video gives positive-going output data  
Coarse Offsets  
Address  
000110  
RLCV[3:0]  
b3, b2, b1, b0  
1011  
Controls RLC DAC driving VRLC pin, to define single-ended signal-reference voltage  
or reset-level clamp voltage. F(hex) is VDD, 0(hex) is 0V, B(hex) (default) is 11/15  
AVDD (= 3.67V typically).  
RLCEXT  
b4  
1
Powers down the RLC DAC, tri-stating its output, allowing VRLC to be externally driven.  
RLCEXT  
0
RLC DAC drives VRLC pin  
1
RLC DAC Hi-Z  
PGAFS[1:0]  
b6, b5  
00  
Configures the ADC input to accept the following video signal types:  
PGAFS[1] PGAFS[0]  
0
0
1
1
0
1
0
1
Bipolar video  
Bipolar video  
Negative-going video  
Positive-going video  
Revision Number  
Address  
000111  
REV[7:0]  
b7, …..b0  
43  
Read-only register, allows the user to determine the revision level of the device.  
ASCII 7-bit code, e.g. 43(hex) = C  
DAC Values  
Address  
1000xy  
DAC[7:0]  
b7, …..b0  
1000  
0000  
The offset-setting data for the Red, Green and Blue offset DACs. 00(hex) gives  
-200mV offset referred to signal input, FF(hex) gives +200mV, 80(hex) (default) gives  
approximately zero offset.  
PGA Gains  
Address  
1010xy  
PGA[5:0]  
b5, ….. b0  
000000  
The gain setting data for the Red, Green, and Blue programmable gain amplifiers.  
00(hex) gives min gain, 3F(hex) gives max gain.  
Table 8 Control Register Bit Descriptions  
PD Rev 4.0 April 1999  
36  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
RECOMMENDED EXTERNAL COMPONENTS  
DVDD  
AVDD  
1
41  
28  
27  
3
DVDD1  
DVDD2  
AVDD1  
AVDD2  
AVDD3  
AVDD4  
13  
C1  
C2  
8
24  
4
DGND1  
DGND2  
DGND3  
DGND4  
C3  
C4  
C5  
C6  
DGND  
AGND  
26  
33  
32  
31  
VRLC  
VRX  
36  
37  
39  
RINP  
GINP  
BINP  
VRT  
C7  
C8  
Video  
Inputs  
C9  
C10  
29  
VRB  
C11  
C12  
5
7
2
38  
23  
22  
MCLK  
VSMP  
RLC  
NC  
NC  
NC  
Timing  
Signals  
AGND  
AGND  
WM8148  
46  
47  
45  
48  
21  
20  
19  
18  
17  
16  
15  
14  
12  
11  
10  
9
SCK/RNW  
SEN/STB  
SDI/DNA  
PNS  
OP11  
OP10  
OP9  
OP8  
OP7  
OP6  
OP5  
OP4  
OP3  
OP2  
OP1  
OP0  
DVDD  
C13  
AVDD  
Interface  
Controls  
C14  
C15  
C16  
+
+
+
+
43  
42  
34  
Output  
OEB  
Data  
Bus  
NRESET  
OVRD  
DGND  
AGND  
35  
40  
30  
25  
6
AGND1  
AGND2  
AGND3  
AGND4  
AGND5  
NOTES: 1. C1-12 should be fitted as close to  
WM8148 as possible.  
2. AGND and DGND should be connected  
as close to WM8148 as possible.  
Serial  
Output  
44  
SDO  
AGND  
Figure 44 External Components Diagram  
COMPONENT  
REFERENCE  
SUGGESTED  
VALUE  
DESCRIPTION  
C1  
C2  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
10nF  
1µF  
De-coupling for DVDD1.  
De-coupling for DVDD2.  
De-coupling for AVDD4.  
De-coupling for AVDD3.  
De-coupling for AVDD2.  
De-coupling for AVDD1.  
C3  
C4  
C5  
C6  
C7  
High frequency de-coupling between VRT and VRB.  
C8  
Low frequency de-coupling between VRT and VRB (non-polarised).  
De-coupling for VRX.  
C9  
100nF  
100nF  
100nF  
100nF  
1µF  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
De-coupling for VRLC.  
De-coupling for VRB.  
De-coupling for VRT.  
Reservoir capacitor for DVDD.  
Reservoir capacitor for DVDD.  
Reservoir capacitor for AVDD.  
Reservoir capacitor for AVDD.  
1µF  
1µF  
1µF  
Table 9 External Components Descriptions  
PD Rev 4.0 April 1999  
37  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
APPLICATIONS RECOMMENDATIONS  
INTRODUCTION  
The WM8148 is a mixed signal device, therefore careful PCB layout is required. The following section  
contains PCB layout guidelines, which are recommended for optimal performance from the WM8148,  
and some typical applications circuits.  
PCB LAYOUT  
1) Use separate analogue and digital power and ground planes. The analogue and digital ground  
planes should be connected as close as possible to, or underneath, the WM8148.  
2) Place all supply decoupling capacitors as close as possible to their respective supply pins and  
provide a low impedance path from the capacitors to the appropriate ground.  
3) Avoid noise on AGND (in particular on pins 30, 35 and 40).  
4) Avoid noise on reference pins VRT, VRB and VRX. Place the decoupling capacitors as close as  
possible to these pins and provide a low impedance path from the capacitors to analogue  
ground.  
5) Input signals should be screened from each other and from other sources of noise to avoid  
cross talk and interference.  
6) Minimise load capacitance on digital outputs. Capacitive loads of greater than 20pF will degrade  
performance. Use buffers if necessary and keep tracks short.  
TYPICAL APPLICATIONS DIAGRAMS  
CCDs are available in four basic types that are all compatible with the WM8148.  
Monochrome single output.  
Monochrome odd-even output.  
Colour 3 output.  
Colour 6 output.  
Each of these applications is outlined in this section.  
The output from a CCD sensor usually has a high impedance and must therefore be buffered  
as close to the sensor as possible. The sensor manufacturers’ datasheets specify the buffer circuit  
to use.  
Initially, the designer must decide if CDS and Reset Level Clamping is to be used. The WM8148  
supports both of these functions and Wolfson recommend using both CDS and pixel-by-pixel  
clamping for optimal performance. In this case a low value a.c. coupling capacitor is required  
between the sensor and the WM8148. Experiments have shown that a 100pF capacitor is the  
optimum value to use, however this may vary for particular applications depending on speed of  
operation and PCB layout.  
PD Rev 4.0 April 1999  
38  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
MONOCHROME SINGLE OUTPUT  
C
S
VOUT  
BUFFER  
RINP  
CLOCKS  
DATA  
E
N
S
O
R
WM8148  
Including  
recommended  
external  
See sensor  
datasheet for  
details  
SYSTEM  
ASIC  
components  
CONTROL I/F  
SENSOR TIMING  
Maximum Pixel Rate = 6.66Mpixels/second (Mode 2)  
Figure 45 Block Diagram of Monochrome CCD Application  
REGISTER  
SETTING  
BINARY  
NOTE  
DESCRIPTION  
ADDRESS  
HEX  
Set-up register 1  
Set-up register 2  
Set-up register 3  
000001  
22  
0010 0010  
MODE: Mode 2: single-channel CDS  
SELEN: selective power enable  
000010  
000011  
9F  
02  
1001 1111  
0000 0010  
SENBL: green/blue PGAs  
powered off  
CHAN: red channel selected  
RESREF: reset sample half-way  
between video samples  
Set-up register 4  
Coarse offsets  
000101  
000110  
80  
1000 0000  
0100 1011  
INVOP: invert digital output  
(White = 4095)  
4B  
PGAFS: ADC set up for negative  
polarity video  
RLCEXT, RLCV: internal VRLC  
voltage, set to 3.7V  
Table 10 Typical Control Register Settings for Figure 45  
(CDS, Negative-Going CCD Video Signal, MCLK/VSMP = 6)  
PD Rev 4.0 April 1999  
39  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
MONOCHROME ODD-EVEN OUTPUT  
CO  
S
CLOCKS  
DATA  
O
BUFFER  
RINP  
GINP  
E
N
S
O
R
WM8148  
Including  
recommended  
external  
CE  
SYSTEM  
ASIC  
components  
E
BUFFER  
CONTROL I/F  
See sensor  
datasheet for  
details.  
SENSOR TIMING  
Maximum Pixel Rate = 10.66Mpixels/second (Mode 4)  
Maximum Pixel Rate = 12Mpixels/second (Mode 12)  
Figure 46 Block Diagram of Monochrome CCD (Odd-Even Outputs) Application  
REGISTER  
SETTING  
BINARY  
NOTE  
DESCRIPTION  
ADDRESS  
HEX  
Set-up register 1  
000001  
42  
0100 0010  
MODE: Mode 4: Two-channel CDS  
SELEN: selective power enable  
Set-up register 2  
Set-up register 3  
000010  
000011  
BF  
02  
1011 1111  
0000 0010  
SENBL: blue PGAs powered off  
RESREF: reset sample half-way  
between video samples  
Set-up register 4  
Coarse offsets  
000101  
000110  
80  
1000 0000  
0100 1011  
INVOP: invert digital output  
(White = 4095)  
4B  
PGAFS: ADC set up for negative  
polarity video  
RLCEXT, RLCV: internal VRLC  
voltage, set to 3.7V  
Table 11 Typical Control Register Settings for Figure 46  
(CDS, Negative-Going CCD Video Signal, MCLK/VSMP = 6)  
REGISTER  
SETTING  
BINARY  
NOTE  
DESCRIPTION  
ADDRESS  
HEX  
Set-up register 1  
000001  
C2  
1100 0010  
MODE: Mode 12: Two-channel CDS  
SELEN: selective power enable  
Set-up register 2  
Set-up register 3  
000010  
000011  
BF  
02  
1011 1111  
0000 0010  
SENBL: blue PGAs powered off  
CHAN: red channel selected  
RESREF: reset sample half-way  
between video samples  
Set-up register 4  
Coarse offsets  
000101  
000110  
80  
1000 0000  
0100 1011  
INVOP: invert digital output  
(White = 4095)  
4B  
PGAFS: ADC set up for negative  
polarity video  
RLCEXT, RLCV: internal VRLC  
voltage, set to 3.7V  
Table 12 Typical Control Register Settings for Figure 46  
(CDS, Negative-Going CCD Video Signal, MCLK/VSMP = 8)  
PD Rev 4.0 April 1999  
40  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
COLOUR 3 OUTPUT  
CR  
CG  
CB  
R
G
B
BUFFER  
RINP  
GINP  
BINP  
S
E
N
S
O
R
CLOCKS  
DATA  
WM8148  
Including  
recommended  
external  
BUFFER  
BUFFER  
SYSTEM  
ASIC  
components  
CONTROL I/F  
See sensor  
datasheet for  
details.  
SENSOR TIMING  
Maximum Pixel Rate = 4Mpixels/second (Modes 0 and 8)  
Figure 47 Block Diagram of Colour CCD Application  
REGISTER  
SETTING  
BINARY  
NOTE  
DESCRIPTION  
ADDRESS  
HEX  
Set-up register 1  
000001  
01  
0000 0001  
MODE: Mode 0: Three-channel CDS  
(8-phase)  
SELEN, EN: fully enabled  
Set-up register 2  
Set-up register 3  
000010  
000011  
00  
04  
0000 0000  
0000 0100  
Default (don’t care)  
RESREF: reset sample half-way  
between video samples  
Set-up register 4  
Coarse offsets  
000101  
000110  
80  
1000 0000  
0100 1011  
INVOP: invert digital output  
(White = 4095)  
4B  
PGAFS: ADC set up for negative  
polarity video  
RLCEXT, RLCV: internal VRLC  
voltage, set to 3.7V  
Table 13 Typical Control Register Settings for Figure 47  
(CDS, Negative-Going CCD Video Signal, MCLK/VSMP = 8)  
REGISTER  
SETTING  
BINARY  
NOTE  
DESCRIPTION  
ADDRESS  
HEX  
Set-up register 1  
000001  
81  
1000 0001  
MODE: Mode 8: Three-channel CDS  
(12-phase)  
SELEN, EN: fully enabled  
Set-up register 2  
Set-up register 3  
000010  
000011  
00  
06  
0000 0000  
0000 0110  
Default (don’t care)  
RESREF: reset sample half-way  
between video samples  
Set-up register 4  
Coarse offsets  
000101  
000110  
80  
1000 0000  
0100 1011  
INVOP: invert digital output  
(White = 4095)  
4B  
PGAFS: ADC set up for negative  
polarity video  
RLCEXT, RLCV: internal VRLC  
voltage, set to 3.7V  
Table 14 Typical Control Register Settings for Figure 47  
(CDS, Negative-Going CCD Video Signal, MCLK/VSMP = 12)  
PD Rev 4.0 April 1999  
41  
WOLFSON MICROELECTRONICS LTD  
WM8148  
Production Data  
COLOUR 6 OUTPUT  
For applications that require higher pixel rates, multiple WM8148 devices can be used. The following  
diagrams show typical configurations.  
CR E  
RE  
G E  
BE  
BUFFER  
BUFFER  
BUFFER  
RINP  
GINP  
BINP  
CLOCKS  
DATA  
WM8148  
CG E  
Including  
recommended  
external  
components  
CBE  
CONTROL I/F  
S
E
N
S
O
R
CR O  
CG O  
CB O  
SYSTEM  
ASIC  
RO  
G O  
BO  
BUFFER  
BUFFER  
BUFFER  
RINP  
GINP  
BINP  
CLOCKS  
WM8148  
Including  
recommended  
external  
DATA  
components  
CONTROL I/F  
See sensor  
datasheet for  
details.  
SENSOR TIMING  
Figure 48 Block Diagram Showing Dual Architecture  
CR E  
WM8148 CLOCKS  
RE  
BUFFER  
BUFFER  
RINP  
GINP  
Including  
recommended  
external  
DATA  
CR O  
components  
RO  
CONTROL I/F  
CG E  
S
E
N
S
O
R
WM8148 CLOCKS  
G E  
BUFFER  
BUFFER  
RINP  
GINP  
Including  
recommended  
external  
DATA  
CG O  
components  
G O  
SYSTEM  
ASIC  
CONTROL I/F  
CBE  
WM8148 CLOCKS  
BE  
BUFFER  
BUFFER  
RINP  
GINP  
Including  
recommended  
external  
DATA  
CB O  
components  
BO  
CONTROL I/F  
See sensor  
datasheet for  
details.  
SENSOR TIMING  
Figure 49 Block Diagram Showing Triple Architecture  
WOLFSON MICROELECTRONICS LTD  
PD Rev 4.0 April 1999  
42  
WM8148  
Production Data  
PACKAGE DIMENSIONS  
FT: 48 PIN TQFP (7 x 7 x 1.0 mm)  
DM004.C  
b
e
36  
25  
37  
24  
E1  
E
48  
13  
1
12  
Θ
D1  
D
c
L
A1  
A
A2  
-C-  
SEATING PLANE  
ccc  
C
Dimensions  
(Millimeters)  
NOM  
Symbols  
MIN  
-----  
0.05  
0.95  
0.17  
0.09  
MAX  
1.20  
0.15  
1.05  
0.27  
0.20  
A
A1  
A2  
b
-----  
-----  
1.00  
0.22  
c
-----  
D
D1  
E
E1  
e
L
Θ
9.00 BSC  
7.00 BSC  
9.00 BSC  
7.00 BSC  
0.50 BSC  
0.60  
0.45  
0o  
0.75  
7o  
3.5o  
Tolerances of Form and Position  
0.08  
ccc  
REF:  
JEDEC.95, MS-026  
NOTES:  
A. ALL LINEAR DIMENSIONS ARE IN MILLIMETERS.  
B. THIS DRAWING IS SUBJECT TO CHANGE WITHOUT NOTICE.  
C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSION, NOT TO EXCEED 0.25MM.  
D. MEETS JEDEC.95 MS-026, VARIATION ABC. REFER TO THIS SPECIFICATION FOR FURTHER DETAILS.  
=
PD Rev 4.0 April 1999  
43  
WOLFSON MICROELECTRONICS LTD  
厂商 型号 描述 页数 下载

WOLFSON

XWM8146CDW/V 12位(8 + 4位)的线性传感器图像处理器[ 12-bit(8+4-bit) Linear Sensor Image Processor ] 17 页

WOLFSON

XWM8170CFT/V 3.3V集成信号处理器的面阵CCD的[ 3.3V Integrated Signal Processor for Area Array CCDs ] 41 页

WOLFSON

XWM8181CDW 12位2MSPS串行输出CIS / CCD数字转换器[ 12-bit 2MSPS Serial Output CIS/CCD Digitiser ] 14 页

WOLFSON

XWM8190CDW/V ( 8 + 6 )位输出14位CIS / CCD AFE /数字转换器[ (8+6) Bit Output 14-bit CIS/CCD AFE/Digitiser ] 25 页

WOLFSON

XWM8191CFT 14位6MSPS CIS / CCD模拟前端/数字转换器[ 14-bit 6MSPS CIS/CCD Analogue Front End/Digitiser ] 27 页

WOLFSON

XWM8192 (88)位输出16位CIS / CCD AFE /数字转换器[ (88) Bit Output 16-bit CIS/CCD AFE/Digitiser ] 24 页

WOLFSON

XWM8192CDW/V (88)位输出16位CIS / CCD AFE /数字转换器[ (88) Bit Output 16-bit CIS/CCD AFE/Digitiser ] 24 页

CIRRUS

XWM8194CDW/V [ Analog Circuit, 1 Func, CMOS, PDSO28, 7.50 MM, 1.27 MM PITCH, MS-013AE, SOIC-28 ] 27 页

WOLFSON

XWM81955CFT/RV 14位12MSPS CIS / CCD模拟前端/数字转换器[ 14-bit 12MSPS CIS/CCD Analogue Front End/Digitiser ] 33 页

WOLFSON

XWM8195CFT 14位12MSPS CIS / CCD模拟前端/数字转换器[ 14-bit 12MSPS CIS/CCD Analogue Front End/Digitiser ] 31 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.189732s