找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

2SK2369

型号:

2SK2369

描述:

切换N沟道功率MOS FET工业用[ SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE ]

品牌:

NEC[ NEC ]

页数:

8 页

PDF大小:

114 K

DATA SHEET  
MOS FIELD EFFECT TRANSISTORS  
2SK2369/2SK2370  
SWITCHING  
N-CHANNEL POWER MOS FET  
INDUSTRIAL USE  
DESCRIPTION  
PACKAGE DIMENSIONS  
The 2SK2369/2SK2370 is N-Channel MOS Field Effect Transis-  
tor designed for high voltage switching applications.  
(in millimeters)  
φ 3.0 0.2  
FEATURES  
Low On-Resistance  
4.7 MAX.  
1.5  
15.7 MAX  
2SK2369: RDS(on) = 0.35 (VGS = 10 V, ID = 10 A)  
4
2SK2370: RDS(on) = 0.4 (VGS = 10 V, ID = 10 A)  
Low Ciss  
High Avalanche Capability Ratings  
Ciss = 2400 pF TYP.  
1
2
3
ABSOLUTE MAXIMUM RATINGS (TA = 25 ˚C)  
Drain to Source Voltage(2SAK2369/2370) VDSS  
450/500  
V
V
1.0 0.2  
5.45  
2.2 0.2  
5.45  
Gate to Source Voltage  
VGSS  
ID(DC)  
ID(pulse)  
PT1  
±30  
±20  
±80  
140  
3.0  
0.6 0.1  
2.8 0.1  
Drain Current (DC)  
A
Drain Current (pulse)*  
A
1. Gate  
2. Drain  
3. Source  
4. Fin (Drain)  
Total Power Dissipation (Tc = 25 ˚C)  
Total Power Dissipation (TA = 25 ˚C)  
Channel Temperature  
W
W
˚C  
PT2  
Tch  
150  
Storage Temperature  
Tstg –55 to +150 ˚C  
Single Avalanche Current**  
Single Avalanche Energy**  
IAS  
20  
A
MP-88  
EAS  
285  
mJ  
*
PW 10 µs, Duty Cycle 1 %  
Drain  
** Starting Tch = 25 ˚C, RG = 25 , VGS = 20 V 0  
Body  
Diode  
Gate  
Source  
Document No. TC-2507  
(O. D. No. TC-8066)  
Date Published January 1995 P  
Printed in Japan  
1995  
©
2SK2369/2SK2370  
ELECTRICAL CHARACTERISTICS (TA = 25 ˚C)  
CHARACTERISTIC  
SYMBOL  
MIN.  
TYP.  
0.30  
0.32  
MAX.  
0.35  
0.40  
3.5  
UNIT  
TEST CONDITIONS  
Drain to Source On-State Resistance  
RDS(on)  
VGS = 10 V  
ID = 10 V  
2SK2369  
2SK2370  
Gate to Source Cutoff Voltage  
Forward Transfer Admittance  
Drain Leakage Current  
Gate to Source Leakage Current  
Input Capacitance  
VGS(off)  
| yfs |  
IDSS  
IGSS  
Ciss  
Coss  
Crss  
td(on)  
tr  
2.5  
7.5  
VDS = 10 V, ID = 1 mA  
VDS = 10 V, ID = 10 A  
VDS = VDSS, VGS = 0  
VGS = ±30 V, VDS = 0  
VDS = 10 V  
V
S
µA  
100  
nA  
±100  
2400  
500  
45  
pF  
pF  
pF  
ns  
ns  
ns  
ns  
nC  
nC  
nC  
V
Output Capacitance  
VGS = 0  
Reverse Transfer Capacitance  
Turn-On Delay Time  
f = 1 MHz  
35  
ID = 10 A  
Rise Time  
60  
VGS = 10 V  
Turn-Off Delay Time  
Fall Time  
td(off)  
tf  
105  
65  
VDD = 150 V  
RG = 10 RL = 15 Ω  
ID = 20 A  
Total Gate Charge  
QG  
65  
Gate to Source Charge  
Gate to Drain Charge  
Body Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
QGS  
QGD  
VF(S-D)  
trr  
15  
VDD = 400 V  
30  
VGS = 10 V  
1.0  
500  
3.5  
IF = 20 A, VGS = 0  
IF = 20 A, VGS = 0  
di/dt = 50 A/µs  
ns  
µC  
Qrr  
Test Circuit 1 Avalanche Capability  
Test Circuit 2 Switching Time  
D.U.T.  
D.U.T.  
V
GS  
L
RL  
RG = 25 Ω  
90 %  
V
GS  
Wave Form  
VGS (on)  
10 %  
10 %  
RG  
0
VDD  
PG  
PG.  
50 Ω  
RG = 10 Ω  
VDD  
VGS = 20 - 0 V  
I
D
90 %  
90 %  
10 %  
I
D
VGS  
0
BVDSS  
I
D
0
Wave Form  
IAS  
VDS  
t
d (on)  
t
r
t
d (off)  
t
f
ID  
t
VDD  
t
on  
t
off  
t = 1us  
Duty Cycle 1 %  
Starting Tch  
Test Circuit 3 Gate Charge  
D.U.T.  
IG = 2 mA  
RL  
PG.  
50 Ω  
VDD  
The application circuits and their parameters are for references only and are not intended for use in actual design-in's.  
2
2SK2369/2SK2370  
TYPICAL CHARACTERISTICS (TA = 25 ˚C)  
DERATING FACTOR OF FORWARD BIAS  
SAFE OPERATING AREA  
TOTAL POWER DISSIPATION vs.  
CASE TEMPERATURE  
100  
80  
140  
120  
100  
80  
60  
40  
20  
60  
40  
20  
0
0
20  
40  
60  
80 100 120 140 160  
20  
40  
60  
80 100 120 140 160  
TC - Case Temperature - (˚C)  
TC - Case Temperature - (˚C)  
DRAIN CURRENT vs.  
DRAIN TO SOURCE VOLTAGE  
FORWARD BIAS SAFE OPERATING AREA  
25  
20  
15  
10  
5
100  
10  
ID (pulse)  
VGS = 10 V  
µ
µ
8 V  
ID (DC)  
6 V  
1.0  
0.1  
5 V  
TC = 25 ˚C  
Single Pulse  
1
10  
100  
1 000  
0
5
10  
15  
20  
VDS - Drain to Source Voltage - (V)  
VDS - Drain to Source Voltage - (V)  
DRAIN CURRENT vs.  
GATE TO SOURCE VOLTAGE  
100  
10  
1.0  
Tch = 125 ˚C  
75 ˚C  
25 ˚C  
25 ˚C  
0.1  
VDS = 10 V  
Pulsed  
0
5
10  
15  
VGS - Gate to Source Voltage - (V)  
3
2SK2369/2SK2370  
TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH  
1 000  
100  
10  
Rth (ch-a) = 41.7 ˚C/W  
Rth (ch-c) = 0.89 ˚C/W  
1
0.1  
0.01  
0.001  
TC = 25 ˚C  
Single Pulse  
10 µ  
100µ  
1 m  
10 m 100 m  
1
10  
100  
1 000  
PW - Pulse Width - (s)  
FORWARD TRANSFER ADMITTANCE vs.  
DRAIN CURRENT  
DRAIN TO SOURCE ON-STATE RESISTANCE vs.  
GATE TO SOURCE VOLTAGE  
100  
10  
2.5  
VDS = 10 V  
Pulsed  
Pulsed  
Tch = –25 ˚C  
25 ˚C  
2.0  
75 ˚C  
125 ˚C  
1.5  
1.0  
0.5  
ID = 20 A  
10 A  
1.0  
5 A  
0
1.0  
10  
100  
5
10  
15  
20  
25  
30  
ID - Drain Current - (A)  
VGS - Gate to Source Voltage - (V)  
DRAIN TO SOURCE ON-STATE  
RESISTANCE vs. DRAIN CURRENT  
GATE TO SOURCE CUT OFF VOLTAGE  
vs. CHANNEL TEMPERATURE  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
VDS = 10 V  
ID = 1 mA  
VGS = 10 V  
0.1  
1.0  
10  
100  
–50 –25  
0
25 50 75 100 125 150 175  
ID - Drain Current - (A)  
Tch - Channel Temperature - (˚C)  
4
2SK2369/2SK2370  
DRAIN TO SOURCE ON-STATE RESISTANCE vs.  
CHANNEL TEMPERATURE  
SOURCE TO DRAIN DIODE  
FORWARD VOLTAGE  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
10  
V
GS = 10 V  
Pulsed  
I
D
= 20 A  
10 A  
V
GS = 10 V  
V
GS = 0 V  
1
0.1  
0.01  
–50 –25  
0
25 50 75 100 125 150 175  
0
0.5  
1.0  
1.5  
T
ch - Channel Temperature - (˚C)  
VSD - Source to Drain Voltage - (V)  
CAPACITANCE vs. DRAIN TO  
SOURCE VOLTAGE  
SWITCHING CHARACTERISTICS  
10 000  
1 000  
100  
1 000  
100  
10  
V
GS = 0 V  
t
r
f = 1 MHz  
C
iss  
t
f
t
d (off)  
d (on)  
t
C
oss  
C
rss  
V
= 150 V  
VDD = 10 V  
RGinS= 10 Ω  
10  
1.0  
0.01  
0.1  
1.0  
10  
100  
1 000  
0.1  
1.0  
10  
100  
V
DS - Drain to Source Voltage - (V)  
I
D
- Drain Current - (A)  
REVERSE RECOVERY TIME vs.  
REVERSE DRAIN CURRENT  
DYNAMIC INPUT/OUTPUT CHARACTERISTICS  
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
20  
18  
16  
14  
12  
10  
8
I = 20 A  
D
V
DD = 400 V  
250 V  
125 V  
V
GS  
6
4
V
DS  
d
V
i
/d = 50 A/µs  
t
2
GS = 0 V  
0
0.1  
1.0  
10  
100  
0
10  
20  
30  
40  
50  
60  
70  
I
F
- Forward Current - (A)  
Q
g
- Gate Charge - (nC)  
5
2SK2369/2SK2370  
SINGLE AVALANCHE ENERGY vs.  
STARTING CHANNEL TEMPERATURE  
SINGLE AVALANCHE ENERGY vs.  
INDUCTIVE LOAD  
300  
200  
100  
0
100  
10  
VDD = 150 V  
RG = 25 Ω  
VGS = 20 V 0 V  
IAS 20 A  
RG = 25 Ω  
VGS = 20 V 0  
VDD = 150 V  
IAS = 20 A  
1.0  
0
25  
50  
75  
100  
125  
150  
175  
100µ  
1 m  
10 m  
100 m  
Starting Channel Temperature - (˚C)  
L - Inductive Load - (H)  
6
2SK2369/2SK2370  
REFERENCE  
Document Name  
Document No.  
TEI-1202  
IEI-1209  
NEC semiconductor device reliability/quality control system.  
Quality grade on NEC semiconductor devices.  
Semiconductor device mounting technology manual.  
Semiconductor device package manual.  
IEI-1207  
IEI-1213  
Guide to quality assurance for semiconductor devices.  
Semiconductor selection guide.  
MEI-1202  
MF-1134  
TEA-1034  
TEA-1035  
TEA-1037  
Power MOS FET features and application switching power supply.  
Application circuits using Power MOS FET.  
Safe operating area of Power MOS FET.  
The diode connected between the gate and source of the transistor serves as a protector against ESD. When  
this device is actually used, an additional protection circuit is externally required if a voltage exceeding the  
rated voltage may be applied to this device.  
7
2SK2369/2SK2370  
[MEMO]  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this  
document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from use of a device described herein or any other liability arising  
from use of such device. No license, either express, implied or otherwise, is granted under any patents,  
copyrights or other intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
“Standard“, “Special“, and “Specific“. The Specific quality grade applies only to devices developed based on  
a customer designated “quality assurance program“ for a specific application. The recommended applications  
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each  
device before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices in “Standard“ unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact NEC Sales Representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 94.11  
厂商 型号 描述 页数 下载

PANASONIC

2SK0065 为在低频率阻抗变换[ For Impedance Conversion In Low Frequency ] 3 页

ETC

2SK0065(2SK65) 小信号デバイス - 小信号FET - 接合形场效应管\n[ 小信号デバイス - 小信号FET - 接合形FET ] 3 页

ETC

2SK0065P 晶体管| JFET | N沟道| 12V V( BR ) DSS | 40uA的我( DSS ) | SPAKVAR\n[ TRANSISTOR | JFET | N-CHANNEL | 12V V(BR)DSS | 40UA I(DSS) | SPAKVAR ] 3 页

ETC

2SK0065Q 晶体管| JFET | N沟道| 12V V( BR ) DSS | 150UA我( DSS ) | SPAKVAR\n[ TRANSISTOR | JFET | N-CHANNEL | 12V V(BR)DSS | 150UA I(DSS) | SPAKVAR ] 3 页

PANASONIC

2SK0123 为在低频率阻抗变换[ For Impedance Conversion In Low Frequency ] 3 页

ETC

2SK0123(2SK123) 小信号器件 - 小信号场效应管 - 场效应管结\n[ Small-signal device - Small-signal FETs - Junction FETs ] 3 页

PANASONIC

2SK0198 对于低频放大[ For Low-Frequency Amplification ] 3 页

ETC

2SK0198(2SK198) 2SK0198 ( 2SK198 ) - N沟道结型场效应管\n[ 2SK0198 (2SK198) - N-Channel Junction FET ] 3 页

PANASONIC

2SK0198P [ Small Signal Field-Effect Transistor, 0.02A I(D), 30V, 1-Element, N-Channel, Silicon, Junction FET, TO-236, ROHS COMPLIANT, MINI3-G1, SC-59, 3 PIN ] 3 页

PANASONIC

2SK0198Q [ Small Signal Field-Effect Transistor, 0.02A I(D), 30V, 1-Element, N-Channel, Silicon, Junction FET, TO-236, ROHS COMPLIANT, MINI3-G1, SC-59, 3 PIN ] 3 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.195008s