找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

NX9511B

型号:

NX9511B

描述:

9A同步降压开关REGULATORWITH 1MHz的工作频率[ 9A SYNCHRONOUS BUCK SWITCHING REGULATORWITH 1MHz OPERATION FREQUENCY ]

品牌:

MICROSEMI[ Microsemi ]

页数:

16 页

PDF大小:

519 K

NX9511B  
9A SYNCHRONOUS BUCK SWITCHING REGULATORWITH 1MHz  
OPERATION FREQUENCY  
PRELIMINARY DATA SHEET  
Pb Free Product  
FEATURES  
Switching Controller and MOSFETs in one package  
Bus voltage operation from 2V to 25V  
DESCRIPTION  
The NX9511B is synchronous buck switching converter  
in multi chip module designed for step down DC to DC  
converter applications. They are optimized to convert  
bus voltages from 2V to 25V to as low as 0.8V output  
voltage. The output current can be up to 9A. The NX9511B  
offer an Enable pin that can be used to program the  
converter's start up. NX9511B operates at fixed internal  
frequency of 1MHz and employ loss-less current limit-  
ing protection by sensing the Rdson of synchronous  
MOSFET followed by latch out feature. Feedback under  
voltage triggers Hiccup.  
n
n
n Fixed 1MHz  
n Internal Digital Soft Start Function  
n Output current up to 9A  
n Enable pin to program BUS UVLO  
n
Programmable current limit triggers latch out by  
sensing Rdson of Synchronous MOSFET  
No negative spike at Vout during startup and  
shutdown  
n
n Pb-free and RoHS compliant  
Other features are: Internal digital soft start; Vcc  
undervoltage lock out and shutdown capability via the  
enable pin or comp pin. NX9511B is available in 5x5 MCM n Low Profile On board DC to DCApplication  
APPLICATIONS  
package.  
n
n
n
Graphic Card on board converters  
Memory Vddq Supply  
ADSL Modem  
TYPICAL APPLICATION  
Vin1  
+12V  
Vin2  
+5V  
D1  
VCC  
BST  
1uF  
2*22uF  
BAT54A  
1uH  
EN  
0.1uF  
COMP  
S1  
D2  
SW  
Vout  
+1.2V,9A  
820p  
20k  
15p  
6x (22uF,X5R)  
5k  
OCP  
HG  
HDRV  
FB  
200  
40k  
LG  
AGND  
S2  
390p  
16k  
Figure 1 - Typical application of 9511B  
ORDERING INFORMATION  
Device  
NX9511BCMTR  
Temperature  
0 to 70oC  
Package  
5X5 MCM-32L  
Frequency  
1MHz  
Pb-Free  
Yes  
Rev.1.5  
01/16/08  
1
NX9511B  
ABSOLUTE MAXIMUM RATINGS  
VCC to GND & BST to SW voltage .................... -0.3V to 6.5V  
D1 to GND ........................................................ 25V  
BST to GND Voltage ........................................ -0.3V to 35V  
D2,S1 to GND .................................................. -2V to 35V  
All other pins .................................................... -0.3V to VCC+0.3V or 6.5V  
Storage Temperature Range ............................... -65oC to 150oC  
Operating Junction Temperature Range ............... -40oC to 125oC  
ESD Susceptibility ........................................... 2kV  
Power Dissipation ............................................. TBD  
Output Current ...................................................TBD  
CAUTION: Stresses above those listed in "ABSOLUTE MAXIMUM RATINGS", may cause permanent damage to  
the device. This is a stress only rating and operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied.  
PACKAGE INFORMATION  
32-LEAD PLASTIC MCM 5 x 5  
31 30 29 28  
25  
27 26  
32  
OCP  
COMP  
FB  
S1  
S1  
S1  
D1  
D2  
D2  
D2  
D2  
1
2
3
4
5
6
7
8
24  
23  
22  
D1  
(PAD2)  
AGND  
(PAD1)  
21 AGND  
EN  
D2  
20  
19  
D2  
(PAD3)  
18 VCC  
17  
NC  
15 16  
12 13 14  
9
10  
11  
Rev.1.5  
01/16/08  
2
NX9511B  
ELECTRICAL SPECIFICATIONS  
Unless otherwise specified, these specifications apply over Vcc = 5V, VIN = 12V and TA= 0 to 70oC. Typical values  
refer to TA = 25oC. Low duty cycle pulse testing is used which keeps junction and case temperatures equal to the  
ambient temperature.  
PARAMETER  
Reference Voltage  
SYM  
Test Condition  
Min  
TYP  
MAX Units  
Ref Voltage  
VREF  
0.8  
0.2  
V
Ref Voltage line regulation  
Supply Voltage(Vcc)  
VCC Voltage Range  
%
VCC  
5
3
V
4.5  
5.5  
VCC Supply Current (Static)  
ICC (Static) Outputs not switching  
mA  
Supply Voltage(VBST  
)
VBST Supply Current (Static)  
IBST (Static) Outputs not switching  
I(Dynamic)  
0.2  
15  
mA  
mA  
VCC, VBST Supply Current  
(Dynamic)  
Under Voltage Lockout  
VCC-Threshold  
VCC_UVLO VCC Rising  
VCC_Hyst VCC Falling  
4
V
V
VCC-Hysteresis  
0.2  
Oscillator  
Frequency  
FS  
1
MHz  
V
Ramp-Amplitude Voltage  
VRAMP  
1.5  
75  
Max Duty Cycle  
Min Duty Cycle  
%
%
0
Error Amplifiers  
Transconductance  
Input Bias Current  
EN & SS  
2000  
10  
umho  
nA  
Ib  
Soft Start time  
Tss  
2
1.25  
150  
mS  
V
mV  
Enable HI Threshold  
Enable Hysterises  
Ouput Stage  
High Side MOSFET RDSON  
Low Side MOSFET RDSON  
Output Current  
17  
17  
9
ohm  
ohm  
A
OCP Adjust  
OCP current  
FB Under Voltage Protection  
40  
uA  
V
FB Under Voltage Threshold  
0.48  
Rev.1.5  
01/16/08  
3
NX9511B  
PIN DESCRIPTIONS  
PIN # PIN SYMBOL  
PIN DESCRIPTION  
S1  
Bus input which is connected to high side MOSFET's drain.  
1-3  
5-8,19  
9-14  
15,17  
16  
D2  
Drain of low side MOSFET.  
S2  
Source of low side MOSFET and need to be connected to power ground.  
Low side gate driver output for monitoring.  
NC  
LG  
VCC  
Power supply voltage. A high freq 1uF ceramic capacitor is placed as close as pos-  
18  
sible to and connected to this pin and ground pin. The maximum rating of this pin is  
5V.  
EN  
FB  
External enable signal input for the controller.  
20  
22  
This pin is the error amplifier inverting input. It is connected via resistor divider to the  
output of the switching regulator to set the output DC voltage. When FB pin voltage is  
lower than 0.6V, hiccup circuit starts to recycle the soft start circuit after 2048 switching  
cycles.  
COMP  
OCP  
This pin is the output of error amplifier and is used to compensate the voltage control  
feedback loop. This pin can also be used to perform a shutdown if pulled lower than  
0.3V.  
23  
24  
This pin is connected to the drain of the external low side MOSFET via resistor and  
is the input of the over current protection(OCP) comparator.An internal current source  
40uA is flown to the external resistor which sets the OCP voltage across the Rdson  
of the low side MOSFET. Current limit point is this voltage divided by the Rds-on.  
Once this threshold is reached the Hdrv and Ldrv pins are latched out.  
Ground pin.  
SW  
HDRV  
BST  
SW is the controller pin out which needs to be connected to S1and D2 and provides  
return path for the high side driver.  
25  
26  
27  
High side gate driver output which needs to be connected high side MOSFET gate  
HG.  
This pin supplies voltage to high side FET driver. A high freq 0.1uF ceramic capacitor  
is placed as close as possible to and connected to these pins and respected SW  
pins.  
AGND  
HG  
Analog ground.  
21,28  
29  
High side MOSFET gate which needs to be connected to high side gate driver output  
HDRV.  
D1  
Drain of High side MOSFET.  
30-32,4  
Rev.1.5  
01/16/08  
4
NX9511B  
BLOCK DIAGRAM  
D1  
BST  
HDRV HG  
VCC  
FB  
Hiccup Logic  
OC  
0.6V  
1.25V  
Bias  
Generator  
0.8V  
UVLO  
POR  
START  
EN  
1.25  
/1.15  
S1  
OC  
SW  
D2  
Control  
Logic  
START  
0.8V  
PWM  
OC  
OSC  
ramp  
VCC  
Digital  
start Up  
S
R
Q
FB  
S2  
0.6V  
CLAMP  
40uA  
1.3V  
CLAMP  
COMP  
LG  
OCP  
Latch Out  
START  
OCP  
comparator  
AGND  
Figure 2 - Simplified block diagram of the NX9511B  
Rev.1.5  
01/16/08  
5
NX9511B  
Vin1  
+12V  
Vin2  
+5V  
D1  
VCC  
BST  
C1  
1uF  
Cin  
2*22uF  
D1  
BAT54A  
EN  
C2  
0.1uF  
L1 1uH  
COMP  
S1  
D2  
SW  
Vout  
C4  
+1.2V,9A  
820p  
C5  
Cout  
6x (22uF,X5R)  
15p  
R1  
5k  
R5  
20k  
OCP  
R2  
200  
R3  
40k  
FB  
HG  
HDRV  
S2  
LG  
AGND  
C3  
390p  
R4  
16k  
Figure 3- Demo board schematic  
Rev.1.5  
01/16/08  
6
NX9511B  
Bill of Materials  
Item  
1
2
3
4
5
6
7
8
Quantity  
Reference  
Value  
Manufacture  
1
1
1
8
1
1
1
1
1
1
1
1
1
1
C1  
C2  
C5  
Cin,Cout  
C4  
C3  
D1  
L2  
R5  
R3  
R2  
R4  
U1  
1u  
0.1u  
15p  
22u  
820p  
390p  
BAT54A  
DO3316P-102HC  
Coilcraft  
9
20k  
40k  
200  
16k  
10  
11  
12  
13  
14  
NX9511B/MLPQ32  
L78L05AB/sot89  
U2  
NEXSEM INC.  
Rev.1.5  
01/16/08  
7
NX9511B  
Demoboard waveforms  
Figure 5 - Output voltage transient response  
(VIN=12V, VOUT=1.2V, IOUT=4A)  
Figure 4 - Output ripple (VIN=12V,VOUT=1.2V)  
Figure 6 - Over current protection  
Figure 7 - Startup  
85.00%  
80.00%  
75.00%  
70.00%  
65.00%  
60.00%  
0
2
4
6
8
10  
OUTPUT CURRENT(A)  
Figure 8 - Output Efficiency @VOUT=1.2V,VIN=12V  
Rev.1.5  
01/16/08  
8
NX9511B  
Efficiency v.s. Output Voltage  
Vin=12V Iout=4A  
95.00%  
90.00%  
85.00%  
80.00%  
75.00%  
70.00%  
1
2
3
4
5
Vout(V)  
Figure 9 - Output Efficiency  
Efficiency v.s. Output Voltage  
Vin=12V Iout=6A  
95.00%  
90.00%  
85.00%  
80.00%  
75.00%  
70.00%  
1
2
3
4
5
Vout(V)  
Figure 10 - Output Efficiency  
Rev.1.5  
01/16/08  
9
NX9511B  
Efficiency v.s. Output Voltage  
Vin=12V Iout=8A  
95.00%  
90.00%  
85.00%  
80.00%  
75.00%  
70.00%  
1
2
3
4
5
Vout(V)  
Figure 11 - Output Efficiency  
Efficiency v.s. Output Voltage  
Vin=12V Iout=9A  
95.00%  
90.00%  
85.00%  
80.00%  
75.00%  
70.00%  
65.00%  
1
2
3
4
5
Vout(V)  
Figure 12 - Output Efficiency  
Rev.1.5  
01/16/08  
10  
NX9511B  
Typical application  
Vin  
+5V to 7.5V  
30  
30  
D1  
VCC  
BST  
1uF  
35k  
25k  
2*22uF  
BAT54A  
TL431  
EN  
0.1uF  
0.33uH  
COMP  
S1  
D2  
SW  
Vout  
+1.2V,7A  
560p  
15p  
6x (22uF,X5R)  
3k  
25k  
OCP  
HG  
HDRV  
FB  
200  
40k  
LG  
AGND  
S2  
330p  
16k  
Figure 13 - Typical application of 9511B  
88.00%  
86.00%  
84.00%  
82.00%  
80.00%  
78.00%  
76.00%  
74.00%  
72.00%  
0
2
4
6
8
OUTPUT CURRENT(A)  
Figure 14 - Output voltage transient response  
(VIN=5V, VOUT=1.2V, IOUT=1.5A)  
Figure 15 - Output Efficiency @VOUT=1.2V,VIN=5V  
Rev.1.5  
01/16/08  
11  
NX9511B  
APPLICATION INFORMATION  
V -VOUT VOUT  
1
IN  
DIRIPPLE  
=
=
´
´
LOUT  
V
F
S
Symbol Used In Application Information:  
IN  
...(2)  
VIN  
- Input voltage  
- Output voltage  
- Output current  
12V-1.8V 1.8V  
1
´
´
= 2.25A  
0.68uH 12V 1000kHz  
VOUT  
IOUT  
VRIPPLE - Output voltage ripple  
- Working frequency  
Output Capacitor Selection  
FS  
Output capacitor is basically decided by the  
amount of the output voltage ripple allowed during steady  
state(DC) load condition as well as specification for the  
load transient. The optimum design may require a couple  
of iterations to satisfy both condition.  
IRIPPLE - Inductor current ripple  
Design Example  
The following is typical application for NX9511B:  
The amount of voltage ripple during the DC load  
condition is determined by equation(3).  
VIN = 12V  
VOUT=1.8V  
DIRIPPLE  
FS=1000kHz  
DVRIPPLE = ESR´ DIRIPPLE  
+
...(3)  
8´ F ´ COUT  
IOUT=9A  
S
VRIPPLE <=20mV  
VDROOP<=100mV @ 9A step  
Where ESR is the output capacitors' equivalent  
series resistance,COUT is the value of output capacitors.  
Typically ceramic capacitors are selected as out-  
put capacitors in NX9811B applications. DC ripple spec  
is easy to be met, usually mutiple ceramic capacitors  
are required at the output to meet transient requirement.  
In this example, two 47uF,X5R are used.  
Output Inductor Selection  
The selection of inductor value is based on induc-  
tor ripple current, power rating, working frequency and  
efficiency. Larger inductor value normally means smaller  
ripple current. However if the inductance is chosen too  
large, it brings slow response and lower efficiency. Usu-  
ally the ripple current ranges from 20% to 40% of the  
output current. This is a design freedom which can be  
decided by design engineer according to various appli-  
cation requirements. The inductor value can be calcu-  
lated by using the following equations:  
Compensator Design  
Due to the double pole generated by LC filter of the  
power stage, the power system has 180o phase shift ,  
and therefore, is unstable by itself. In order to achieve  
accurate output voltage and fast transient  
response,compensator is employed to provide highest  
possible bandwidth and enough phase margin.Ideally,the  
Bode plot of the closed loop system has crossover fre-  
quency between1/10 and 1/5 of the switching frequency,  
phase margin greater than 50o and the gain crossing  
0dB with -20dB/decade. Power stage output capacitors  
usually decide the compensator type. If electrolytic  
capacitors are chosen as output capacitors, type II com-  
pensator can be used to compensate the system, be-  
cause the zero caused by output capacitor ESR is lower  
than crossover frequency. Otherwise type III compensa-  
tor should be chosen.  
V -VOUT VOUT  
1
IN  
LOUT  
=
´
´
DIRIPPLE  
V
F
S
IN  
...(1)  
IRIPPLE =k ´ IOUTPUT  
where k is between 0.2 to 0.4.  
Select k=0.3, then  
12V-1.8V 1.8V  
1
LOUT  
=
´
´
0.4´ 9A 12V 1000kHz  
LOUT =0.42uH  
Choose inductor from COILCRAFT DO3316H-  
681MLD with L=0.68uH is a good choice.  
Current Ripple is recalculated as  
Rev.1.5  
01/16/08  
12  
NX9511B  
A. Type III compensator design  
For low ESR output capacitors, typically such as  
Sanyo oscap and poscap, the frequency of ESR zero  
caused by output capacitors is higher than the cross-  
over frequency. In this case, it is necessary to compen-  
sate the system with type III compensator. The follow-  
ing figures and equations show how to realize the type III  
compensator by transconductance amplifier.  
Zf  
Vout  
Zin  
R3  
C1  
C2  
R4  
R2  
C3  
Fb  
Ve  
gm  
1
R1  
FZ1  
FZ2  
=
=
=
=
...(4)  
...(5)  
...(6)  
...(7)  
2´ p ´ R4 ´ C2  
Vref  
1
2´ p ´ (R2 + R3 )´ C3  
1
Figure 16 - Type III compensator using  
transconductance amplifier  
F
P1  
2´ p ´ R3 ´ C3  
1
F
P2  
C1 ´ C2  
2´ p ´ R4 ´  
C1 + C2  
power stage  
where FZ1,FZ2,FP1 and FP2 are poles and zeros in  
the compensator. Their locations are shown in figure 4.  
The transfer function of type III compensator for  
transconductance amplifier is given by:  
LC  
F
40dB/decade  
Ve  
1- gm ´ Zf  
=
loop gain  
VOUT  
1+ gm ´ Zin + Zin /R1  
20dB/decade  
For the voltage amplifier, the transfer function of  
compensator is  
ESR  
F
Ve  
- Zf  
FO  
=
VOUT  
Zin  
compensator  
To achieve the same effect as voltage amplifier,  
the compensator of transconductance amplifier must  
satisfy this condition: R4>>2/gm. And it would be desir-  
able if R1||R2||R3>>1/gm can be met at the same time.  
F
P2 FP1  
S
F
FZ1  
FZ2  
Figure 17 - Bode plot of Type III compensator  
Rev.1.5  
01/16/08  
13  
NX9511B  
Design example for type III compensator are in  
order. The crossover frequency has to be selected as  
FLC<FO<FESR, and FO<=1/10~1/5Fs.  
1
C2  
=
2 ´ p ´ FZ1 ´ R 4  
1
=
1.Calculate the location of LC double pole FLC  
2 ´ p ´ 0.5 ´ 20kHz ´ 30kW  
= 533pF  
and ESR zero FESR  
.
1
Choose C2=520pF.  
F
=
=
LC  
2´ p ´  
L
OUT ´ COUT  
6. Calculate C1 by equation (14) with pole Fp2 at  
half the switching frequency.  
1
2´ p ´ 0.68uH´ 94uF  
1
C1 =  
= 20kHz  
2 ´ p ´ R4 ´ FP2  
1
1
=
F
=
ESR  
2 ´ p ´ 30k500kHz  
= 10pF  
2´ p ´ ESR ´ COUT  
1
=
2 ´ p ´ 0.5m94uF  
Choose C1=12pF  
= 3.4MHz  
7. Calculate R3 by equation (13).  
2. Set R2 equal to 20kW.  
1
R3 =  
R2 ´ VREF  
60k0.8V  
2´ p ´ F ´ C3  
P1  
R1=  
=
= 48kW  
VOUT -VREF  
1.8V-0.8V  
1
=
2´ p ´ 3.4MHz´ 180pF  
Choose R1=48kW.  
3. Set zero FZ2 = 0.75FLC and Fp1 =FESR  
= 261W  
.
Choose R3=300W.  
4. Calculate R4 and C3 with the crossover  
frequency at 1/10~ 1/5 of the switching frequency. Set  
FO=100kHz.  
Output Voltage Calculation  
Output voltage is set by reference voltage and ex-  
ternal voltage divider. The reference voltage is fixed at  
0.8V. The divider consists of two ratioed resistors so  
that the output voltage applied at the Fb pin is 0.8V when  
the output voltage is at the desired value. The following  
equation and picture show the relationship between  
VOUT , VREF and voltage divider.  
1
1
1
C3 =  
´ (  
-
)
2´ p ´ R2  
F
F
p1  
z2  
1
1
1
=
´ (  
-
)
2´ p ´ 60kW 15kHz 3.4MHz  
=180pF  
VOSC 2´ p ´ FO ´ L  
R4 =  
=
´
´ Cout  
R 2 ´ VREF  
R1=  
V
C3  
1.5V 2´ p ´ 100kHz´ 0.68uH  
in  
...(8)  
VOUT -VREF  
´
´ 94uF  
where R2 is part of the compensator, and the value  
of R1 value can be set by voltage divider.  
12V  
=28kW  
Choose C3=180pF, R4=30kW.  
180pF  
See compensator design for R1 and R2 selection.  
5. Calculate C2 with zero Fz1 at 50% of the LC  
double pole by equation (11).  
Rev.1.5  
01/16/08  
14  
NX9511B  
The NX9511B can be turned off by pulling down the  
Enable pin by extra signal MOSFET as shown in the  
above Figure. When Enable pin is below 1.25V, the digi-  
tal soft start is reset to zero. In addition, all the high side  
and low side driver is off and no negative spike will be  
generated during the turn off.  
Vout  
R2  
Fb  
R1  
Vref  
Over Current Protection  
Over current protection is achieved by sensing cur-  
rent through the low side MOSFET. An internal current  
source of 40uA flows through an external resistor con-  
nected from OCP pin to SW node sets the over current  
protection threshold. When synchronous FET is on, the  
voltage at node SW is given as  
Voltage divider  
Figure 18 - Voltage divider  
Soft Start and Enable  
NX9511B has digital soft start for switching con-  
troller and has one enable pin for this start up. When  
the Power Ready (POR) signal is high and the voltage at  
enable pin is above 1.25V the internal digital counter  
starts to operate and the voltage at positive input of Error  
amplifier starts to increase, the feedback network will  
force the output voltage follows the reference and starts  
the output slowly. After 2048 cycles, the soft start is  
complete and the output voltage is regulated to the de-  
sired voltage decided by the feedback resistor divider.  
VSW =-IL ´ RDSON  
The voltage at pin OCP is given as  
I
OCP ´ ROCP +VSW  
When the voltage is below zero, the over current  
occurs.  
vbus  
I
OCP  
40uA  
OCP  
R
SW  
OCP  
OCP  
comparator  
Vbus  
Figure 20 - Over current protection  
POR  
R1  
R2  
The over current limit can be set by the following  
Digital  
start  
up  
OFF  
10k  
EN  
ON  
1.25V/  
1.15V  
equation  
I
OCP ´ ROCP  
ISET  
=
K ´ RDSON  
The internal MOSFET RDSON=17mW, the worst case  
thermal consideration K=1.3 and the current limit is set  
at 10A, then  
Figure 19 - Enable and Shut down the NX9511B  
with Enable pin.  
I
SET ´ K ´ RDSON 10A ´ 1.3 ´ 17mW  
ROCP  
=
=
= 5.5kW  
The start up of NX9511B can be programmed  
IOCP  
40uA  
through resistor divider at Enable pin. For example, if  
the input bus voltage is12V and we want NX9511B starts  
when Vbus is above 9V. We can select using the follow-  
ing equation.  
Choose ROCP=5.5kW  
(9V - 1.25V)´ R2  
R1 =  
1.25V  
Rev.1.5  
01/16/08  
15  
NX9511B  
MLPQ 32 PIN 5 x 5 PACKAGE OUTLINE DIMENSIONS  
NOTE:ALL DIMENSIONSARE DISPLAYED IN MILLIMETERS.  
Rev.1.5  
01/16/08  
16  
厂商 型号 描述 页数 下载

MICROSEMI

NX9415 5A同步降压开关稳压器[ 5A SYNCHRONOUS BUCK SWITCHING REGULATOR ] 12 页

MICROSEMI

NX9415CM [ Switching Regulator ] 17 页

MICROSEMI

NX9415CMTR 5A同步降压开关稳压器[ 5A SYNCHRONOUS BUCK SWITCHING REGULATOR ] 12 页

MICROSEMI

NX9511BCMTR 9A同步降压开关REGULATORWITH 1MHz的工作频率[ 9A SYNCHRONOUS BUCK SWITCHING REGULATORWITH 1MHz OPERATION FREQUENCY ] 16 页

MICROSEMI

NX9548 9A单通道手机的PWM开关稳压器[ 9A SINGLE CHANNEL MOBILE PWM SWITCHING REGULATOR ] 18 页

MICROSEMI

NX9548CMTR 9A单通道手机的PWM开关稳压器[ 9A SINGLE CHANNEL MOBILE PWM SWITCHING REGULATOR ] 18 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.240429s