找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

WT62P1-K42

型号:

WT62P1-K42

描述:

微控制器的通用串行总线( USB )接口的数字控制显示器[ microcontroller for digital controlled monitor with Universal Serial Bus (USB) interface ]

品牌:

ETC[ ETC ]

页数:

48 页

PDF大小:

413 K

WT62P1  
Data Sheet Rev. 1.01  
GENERAL DESCRIPTION  
The WT62P1 is a microcontroller for digital controlled monitor with Universal Serial Bus (USB) interface.  
It contains an 8-bit CPU, 32K bytes flash memory, 512 bytes RAM, 14 PWMs, parallel I/Os, SYNC signal  
processor, timer, DDC1/2B interface, master/slave I2C interface, low speed USB device module, 6-bit  
A/D converter and watch-dog timer.  
FEATURES  
8-bit 6502 compatible CPU with 6MHz operating frequency  
32768 bytes flash memory, 512 bytes SRAM  
12MHz crystal oscillator  
14 channels 8-bit PWM outputs  
Sync signal processor with H+V separation, H/V frequency counter, H/V polarity detection/control and  
clamp pulse output  
Six free-running sync signal outputs (Horizontal frequency up to 106KHz)  
Self-test pattern  
DDC1/2B supported  
Fast mode master/slave I2C interface (up to 400KHz)  
Embedded USB function with endpoint 0 and endpoint 1  
Built-in 3.3V regulator for USB tranceiver  
Watch-dog timer  
Maximum 28 programmable I/O pins  
One 8-bit programmable timer  
6-bit A/D converter with 4 selectable inputs  
One external interrupt request input  
Low VDD reset  
ORDERING INFORMATION  
Package Type  
42-pin PDIP  
Part Number  
WT62P1-N42  
WT62P1-K42  
WT62P1-N40  
WT62P1-N28  
WT62P1-S44  
42-pin Shrink PDIP  
40-pin PDIP  
28-pin skinny PDIP  
44-pin SOP  
Weltrend Semiconductor, Inc.  
Page 2  
WT62P1  
Data Sheet Rev. 1.01  
PIN CONFIGURATION  
42-pin PDIP  
42-pin SPDIP  
40-pin PDIP  
D+  
PWM2  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
D-  
2
VIN  
PWM2  
PWM1  
1
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
VIN  
PWM1  
3
HIN  
2
HIN  
PWM0  
4
PWM3  
PWM0  
3
PWM3  
RESET/3V3  
VDD  
5
PD5/PWM4  
PD4/PWM5  
PD3/PWM6  
PD2/PWM7  
PD1/HOUT  
PD0/VOUT  
PA7/PWM13/CLAMP  
PA6/PWM12  
PA5/PWM11  
PA4/PWM10  
PA3/PWM9  
PA2/PWM8  
PA1/SCL1  
PA0/SDA1  
PC0/AD0  
RESET/3V3  
VDD  
4
PD5/PWM4  
PD4/PWM5  
PD3/PWM6  
PD2/PWM7  
PD1/HOUT  
PD0/VOUT  
PA7/PWM13/CLAMP  
PA6/PWM12  
PA5/PWM11  
PA4/PWM10  
PA3/PWM9  
PA2/PWM8  
PA1/SCL1  
PA0/SDA1  
PC0/AD0  
6
5
GND  
7
GND  
6
OSCO  
8
OSCO  
7
OSCI  
9
OSCI  
8
PB5/SDA2  
PB4/SCL2  
PB3/PAT  
PB2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
PB5/SDA2  
PB4/SCL2  
PB3/PAT  
PB2  
9
WT62P1-N42  
WT62P1-K42  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
WT62P1-N40  
PB1/HFI  
PB0/HFO  
IRQ  
PB1/HFI  
PB0/HFO  
IRQ  
PC7/SOGIN  
PC6  
PC7/SOGIN  
PC6  
PC5  
PC5  
PC4  
PC1/AD1  
PC4  
PC1/AD1  
PC3/AD3  
PC2/AD2  
PC3/AD3  
PC2/AD2  
44-pin SOP  
D+  
PWM2  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
D-  
2
VIN  
28-pin Skinny PDIP  
PWM1  
3
HIN  
PWM0  
4
PWM3  
PD5/PWM4  
PD4/PWM5  
PA5/PWM11  
PA6/PWM12  
PA7/PWM13/CLAMP  
PD0/VOUT  
PD1/HOUT  
HIN  
1
28  
27  
26  
25  
24  
23  
22  
PA4/PWM10  
PA3/PWM9  
PA2/PWM8  
PA1/SCL1  
PA0/SDA1  
PC0/AD0  
PC1/AD1  
PC2/AD2  
PC3/AD3  
PC4  
RESET/3V3  
VDD  
5
2
6
3
7
4
GND  
OSCO  
8
PD3/PWM6  
PD2/PWM7  
PD1/HOUT  
PD0/VOUT  
PA7/PWM13/CLAMP  
PA6/PWM12  
PA5/PWM11  
PA4/PWM10  
PA3/PWM9  
PA2/PWM8  
PA1/SCL1  
5
9
6
OSCI  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VIN  
7
PB5/SDA2  
PB4/SCL2  
PB3/PAT  
PB2  
WT62P1-N28  
RESET/3V3  
VDD  
8
21  
WT62P1-S44  
9
20  
19  
18  
17  
16  
15  
GND  
10  
11  
12  
13  
14  
OSCO  
PC5  
PB1/HFI  
PB0/HFO  
IRQ  
OSCI  
PC6  
PB5/SDA2  
PB4/SCL2  
PC7  
IRQ  
PC7/SOGIN  
PC6  
PA0/SDA1  
PC5  
PC0/AD0  
PC4  
PC1/AD1  
PC3/AD3  
PC2/AD2  
Weltrend Semiconductor, Inc.  
Page 3  
WT62P1  
Data Sheet Rev. 1.01  
PIN DESCRIPTION  
Pin No.  
44 42 40 28  
Pin Name  
I/O  
Description  
1
2
3
4
5
1
2
3
4
5
-
- D+  
I/O USB D+ signal.  
1
2
3
4
- PWM2  
- PWM1  
- PWM0  
8 /RESET/3V3  
O PWM2 output (10V open-drain).  
O PWM1 output (5V open-drain).  
O PWM0 output (5V open-drain).  
I
Reset input and +3.3V regulator output for USB tranceiver power  
supply.  
6
7
8
9
10  
6
-
7
8
9
5
-
6
7
8
9
9 VDD  
- NC  
10 GND  
11 OSCO  
12 OSCI  
13 PB5/ SDA2  
+5V power supply.  
No Connection.  
Ground.  
I/O 12MHz oscillator output.  
I
12MHz oscillator input.  
11 10  
I/O Port B5 or I2C interface data line.  
I/O Port B4 or I2C interface clock line.  
I/O Port B3 or test pattern output  
I/O Port B2.  
12 11 10 14 PB4/ SCL2  
13 12 11 - PB3/PAT  
14 13 12 - PB2  
15 14 13 - PB1/HFI  
16 15 14 - PB0/HFO  
17 16 15 15 /IRQ  
I/O Port B1 or half frequency divider input.  
I/O Port B0 or half frequency divider output.  
I
Interrupt request input, A low level on this can generate interrupt.  
18 17 16 16 PC7/SOGIN  
19 18 17 17 PC6  
I/O Port C7 or Sync on Green input.  
I/O Port C6.  
20 19 18 18 PC5  
I/O Port C5.  
21 20 19 19 PC4  
I/O Port C4.  
22 21 20 20 PC3/AD3  
23 22 21 21 PC2/AD2  
24 23 22 22 PC1/AD1  
25 24 23 23 PC0/AD0  
26 25 24 24 PA0/SDA1  
27 26 25 25 PA1/SCL1  
28 27 26 26 PA2/PWM8  
29 28 27 27 PA3/PWM9  
30 29 28 28 PA4/PWM10  
31 30 29 1 PA5/PWM11  
32 31 30 2 PA6/PWM12  
I/O Port C3 or ADC input 3.  
I/O Port C2 or ADC input 2.  
I/O Port C1 or ADC input 1.  
I/O Port C0 or ADC input 0.  
I/O Port A0 or DDC interface SDA pin.  
I/O Port A1 or DDC interface SCL pin.  
I/O Port A2 or PWM8 output.  
I/O Port A3 or PWM9 output.  
I/O Port A4 or PWM10 output.  
I/O Port A5 or PWM11 output.  
I/O Port A6 or PWM12 output.  
33 32 31 3 PA7/PWM13/ I/O Port A7 or PWM13 output or clamp pulse output.  
CLAMP  
34 33 32 4 PD0/VOUT  
35 34 33 5 PD1/HOUT  
36 35 34 - PD2/PWM7  
37 36 35 - PD3/PWM6  
I/O Port D0 or Vsync output.  
I/O Port D1 or Hsync output.  
I/O Port D2 or PWM7 output.  
I/O Port D3 or PWM6 output.  
No Connection.  
38  
-
-
- NC  
39 37 36 - PD4/PWM5  
40 38 37 - PD5/PWM4  
41 39 38 - PWM3  
42 40 39 6 HIN  
I/O Port D4 or PWM5 output.  
I/O Port D5 or PWM4 output.  
I/O PWM3 output (10V open-drain).  
I
I
Hsync Input.  
Vsync input.  
43 41 40 7 VIN  
44 42  
-
- D-  
I/O USB D- signal.  
Weltrend Semiconductor, Inc.  
Page 4  
WT62P1  
Data Sheet Rev. 1.01  
FUNCTIONAL DESCRIPTION  
CPU  
8-bit 6502 compatible CPU operates at 6MHz. Address bus is 16-bit and data bus is 8-bit.  
The non-maskable interrupt (/NMI) of 6502 is modified to be maskable and is defined as INT0 with higher  
priority. The interrupt request (/IRQ) of 6502 is defined as INT1 with lower priority.  
Please refer the 6502 reference menu for more detail.  
RAM  
512 bytes RAM. Address is located from $0080h to $00FFh and $0180h to $02FFh.  
RAM from $0200h to $027Fh and $0280h to $02FFh can be disabled individually to emulate different  
RAM size IC. (see Register $0FFFh)  
ROM  
32768 bytes flash memory for program. Address is located from $8000h to $FFFFh.  
The following addresses are reserved for special purpose :  
$FFFAh (low byte) and $FFFBh (high byte) : INT0 interrupt vector.  
$FFFCh (low byte) and $FFFDh (high byte) : program reset interrupt vector.  
$FFFEh (low byte) and $FFFFh (high byte) : INT1 interrupt vector.  
$0000h  
:
Registers  
Reserved  
$003Fh  
$0040h  
:
$007Fh  
$0080h  
:
$00FFh  
$0100h  
:
128 bytes RAM  
Reserved  
$017Fh  
$0180h  
:
$02FFh  
$0300h  
:
384 bytes RAM  
Reserved  
$0FFEh  
$0FFFh Configuration Register  
$1000h  
:
Reserved  
$7FFFh  
$8000h  
:
:
Flash ROM  
:
$FFFFh  
System Reset  
There are four reset sources of this controller. Fig.1 shows the block diagram of reset logic.  
Weltrend Semiconductor, Inc.  
Page 5  
WT62P1  
Data Sheet Rev. 1.01  
ꢎꢛꢜꢛꢉꢝꢞꢒꢞ  
ꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢊꢋꢌꢍꢈꢎꢌꢏꢌꢂ  
ꢐꢆꢑꢈꢒꢓꢓꢈꢎꢌꢏꢌꢂ  
%&'  
ꢒꢓꢓ  
&ꢌꢍꢊ(ꢄꢌꢍꢁꢕ  
%ꢊꢍꢃ)ꢊꢂꢏ  
ꢖꢅꢅꢍꢌꢏꢏ  
ꢗꢘꢙꢚ  
ꢔꢕꢕꢌꢇꢁꢕꢈꢖꢅꢅꢍꢌꢏꢏꢈꢎꢌꢏꢌꢂ  
 !"#$ꢋꢏ  
ꢉꢊꢋꢌꢍ  
Fig. 1 Reset Signals  
External Reset  
A low level on the RESET/3.3V pin will generate reset.  
Illegal address Reset  
When the address bus of CPU goes to illegal address, a reset pulse will be generated.  
The illegal address is defined as $0040h~$007Fh, $0300h~$0FFEh and $1000h~$7FFFh.  
Low VDD Voltage Reset  
When VDD is below 3.9V, an internal reset signal is generated. The reset signal will last 2.048 ms after  
the voltage is higher than 3.9V.  
Watchdog Timer Reset  
If a time-out happens when watchdog timer is enabled, a reset pulse is generated. Please refer  
watchdog timer section for more information.  
Weltrend Semiconductor, Inc.  
Page 6  
WT62P1  
Data Sheet Rev. 1.01  
I/O Port  
I/O Port A  
Pin PA0 and PA1 are shared with DDC interface SDA1 and SCL1 When ENDDC bit is “ 0” , These two  
pins becomes I/O port. If PA0OE bit is set, Pin PA0 is an open-drain output. If PA0OE is cleared, Pin  
PA0 is an input pin with no internal pull-up resistor. The operation of PA1 is same as PA0. Fig. 2 Shows  
the structure of PA0.  
INTERNAL_DATA_BUS  
DATA[0]  
PA0OE  
D
C
Q
PA0  
WRITE_PA_CTRL  
RESET  
QN  
R
DATA[0]  
PA0  
D
C
Q
WRITE_PA_DATA  
RESET  
QN  
R
READ_PA_DATA  
DATA[0]  
Fig.2 Structure of PA0 and PA1  
Pin PA2 to PA6 are shared with PWM output. When corresponding EPWMx bit is “ 0” , the pin is I/O port.  
If PAxOE bit is set, it is a push-pull type output. If PAxOE bit is cleared, it is an input pin with internal  
pull-up resistor.  
Pin PA7 is shared with PWM13 output and clamp pulse output. When both EPWM13 bit and ENCLP bit  
are “ 0” , this pin becomes I/O port. If PA7OE bit is set, it is a push-pull type output. If PA7OE bit is  
cleared, it is an input pin with internal pull-up resistor.  
INTERNAL_DATA_BUS  
DATA[2]  
PA2OE  
D
C
Q
WRITE_PA_CTRL  
RESET  
QN  
R
PA2  
DATA[2]  
PA2  
D
C
Q
WRITE_PA_DATA  
RESET  
QN  
R
READ_PA_DATA  
DATA[2]  
Fig.3 Structure of PA2  
Weltrend Semiconductor, Inc.  
Page 7  
WT62P1  
Data Sheet Rev. 1.01  
Port A Control Register  
Name  
Addr R/W Initial Bit 7 Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PA_CTRL 0000h W  
00h  
PA7OE PA6OE PA5OE PA4OE PA3OE PA2OE PA1OE PA0OE  
Bit Name  
Description  
PAnOE Port An Output Enable.  
When it is set, PAn is output pin.  
When it is cleared, PAn is input pin with internal pull high (except PA0 and PA1 pins).  
Port A Data Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PA_DATA 0001h  
R
W
00h  
00h  
PA7  
PA7  
PA6  
PA6  
PA5  
PA5  
PA4  
PA4  
PA3  
PA3  
PA2  
PA2  
PA1  
PA1  
PA0  
PA0  
Bit Name  
Description  
PAn (W) This bit controls the output level when the corresponding PAnOE bit is set.  
When PAn=1, PAn pin outputs high level. (PA0 and PA1 are open-drain output)  
When PAn=0, PAn pin outputs low level.  
PAn (R) When PAnOE=1 (i.e. output port), this bit is same as PAn (W).  
When PAnOE=0, this bit indicates the input level. “ 1” means high and “ 0” means low.  
I/O Port B  
I/O Port B is shared with some special functions. When the special function is disabled, it is an general  
I/O port and is same as Port A2. If it is configured as an output, it can source/sink 6mA. If it is configured  
as an input, it has an internal pull-up resistor.  
Port B Control Register  
Name  
Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PB_CTRL 0002h  
W
00h  
--  
--  
PB5OE PB4OE PB3OE PB2OE PB1OE PB0OE  
Bit Name  
Description  
PBnOE Port Bn Output Enable.  
When it is set, PBn is output pin.  
When it is cleared, PBn is input pin with internal pull high  
Port B Data Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PB_DATA 0003h  
R
W
00h  
00h  
--  
--  
--  
--  
PB5  
PB5  
PB4  
PB4  
PB3  
PB3  
PB2  
PB2  
PB1  
PB1  
PB0  
PB0  
Bit Name  
Description  
PBn (W) This bit controls the output level when the corresponding PBnOE bit is set.  
When PBn=1, PBn pin outputs high level.  
When PBn=0, PBn pin outputs low level.  
PBn (R) When PBnOE=1 (i.e. output port), this bit is same as PBn (W).  
When PBnOE=0, this bit indicates the input level. “ 1” means high and “ 0” means low.  
Weltrend Semiconductor, Inc.  
Page 8  
WT62P1  
Data Sheet Rev. 1.01  
I/O Port C  
The structure of I/O Port C is same as Port B except the output low level has 10mA current sink  
capability.  
Port C Control Register  
Name  
Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PC_CTRL 0004h  
W
00h PC7OE PC6OE PC5OE PC4OE PC3OE PC2OE PC1OE PC0OE  
Bit Name  
Description  
PCnOE Port Cn Output Enable.  
When it is set, PCn is output pin.  
When it is cleared, PCn is input pin with internal pull high  
Port C Data Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PC_DATA 0005h  
R
W
00h  
00h  
PC7  
PC7  
PC6  
PC6  
PC5  
PC5  
PC4  
PC4  
PC3  
PC3  
PC2  
PC2  
PC1  
PC1  
PC0  
PC0  
Bit Name  
Description  
PCn (W) This bit controls the output level when the corresponding PCnOE bit is set.  
When PCn=1, PCn pin outputs high level.  
When PCn=0, PCn pin outputs low level.  
PCn (R) When PCnOE=1 (i.e. output port), this bit is same as PCn (W).  
When PCnOE=0, this bit indicates the input level. “ 1” means high and “ 0” means low.  
I/O Port D  
I/O Port D is shared with some special functions. When the special function is disabled, it is an general  
I/O port and is same as Port A2. If it is configured as an output, it can source/sink 6mA. If it is configured  
as an input, it has an internal pull-up resistor.  
Port D Control Register  
Name  
Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PD_CTRL 0006h  
W
00h  
--  
--  
PD5OE PD4OE PD3OE PD2OE PD1OE PD0OE  
Bit Name  
Description  
PDnOE Port Dn Output Enable.  
When it is set, PDn is output pin.  
When it is cleared, PDn is input pin with internal pull high  
Port D Data Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PD_DATA 0007h  
R
W
x0h  
x0h  
--  
--  
--  
--  
PD5  
PD5  
PD4  
PD4  
PD3  
PD3  
PD2  
PD2  
PD1  
PD1  
PD0  
PD0  
Bit Name  
Description  
PDn (W) This bit controls the output level when the corresponding PDnOE bit is set.  
When PDn=1, PDn pin outputs high level.  
When PDn=0, PDn pin outputs low level.  
PDn (R) When PDnOE=1 (i.e. output port), this bit is same as PDn (W).  
When PDnOE=0, this bit indicates the input level. “ 1” means high and “ 0” means low.  
Weltrend Semiconductor, Inc.  
Page 9  
WT62P1  
Data Sheet Rev. 1.01  
SYNC Processor  
The functional block diagram of Sync Processor is shown in Fig.4. It contains H and V polarity detection  
circuit, H and V frequency counter, composite sync signal separation circuit, free-running H and V sync  
signal generator, vedio signal generation circuit for burn-in test and clamp pulse generator.  
SEPART  
MUX  
H Period Counter  
SOG  
H Freq Counter  
EXTRHS  
EXTRVS  
HIN  
H Polarity  
Detect  
Composite Signal  
Separator  
BYPASS  
MUX  
ENFREE  
HOPOL  
SOGIN  
MUX  
MUX  
H Polarity Control  
HOUT  
HINPOL  
FREEHS  
Clamp Pulse  
Generator  
CLAMP  
VOUT  
FREE2  
ENFREE  
MUX  
Free-running Sync  
Signal Generator  
FREE1  
FREE0  
VOPOL  
FREEVS  
V Polarity Control  
SEPART  
VINPOL  
MUX  
V Polarity Detect  
VIN  
V Freq Counter  
PAT1  
PAT0  
Test Pattern  
Generator  
PAT  
Fig.4 Block diagram of sync signal processor  
Horizontal Polarity Detect  
The horizontal polarity is detected by sampling HIN signal at 5.5~6.5us after rising and falling edge of  
HIN. If the result of sampling is low and lasts 192~256us with no change, the polarity is positive  
(HINPOL=1). If the result of sampling is high and lasts 192~256us with no change, the polarity is  
negative (HINPOL=0).  
Vertical Polarity Detect  
Vertical polarity is detected by sampling VIN level at 2.048ms after rising edge of VIN. If the level is low,  
the polarity is positive (VINPOL=1). If the level is high, the polarity is negative (VINPOL=0). But if  
SEPART bit is set, the VINPOL bit is “ 1” because the Vsync from composite signal separator is always  
positive polarity.  
Output Polarity Control  
The polarities of HOUT and VOUT are controlled by HOPOL and VOPOL bites. When the bit is set, the  
output polarity is positive. When the bit is cleared, the output polarity is negative.  
Weltrend Semiconductor, Inc.  
Page 10  
WT62P1  
Data Sheet Rev. 1.01  
Horizontal frequency counter  
A 12-bit counter is used to measure horizontal frequency. User can choose 16ms or 32ms time interval  
to count pulse number of Hsync every 16.384ms or 32.768ms. For example, if QUICK bit is set, when a  
16.384ms time frame begins, it resets the counter and starts counting Hsync pulses till 16ms reached,  
then loads the counter value to HFREQ_H and HFREQ_L registers. If the H frequency is over 125KHz,  
the H counter will stop counting and set overflow flag (HOVF ) to “ 1” .  
The sync processor interrupt is generated every 16.384ms or 32.768ms for checking H frequency. This  
interrupt will be cleared after reading the HFREQ_H register.  
Hsync  
Interrupt  
Hfreq Counter  
Enable  
16/32 ms  
16.384/32.768  
Hfreq Counter  
Clock  
Fig.5 Horizontal Frequency Counter timing  
Horizontal Frequency Register  
Name  
Addr R/W Initial  
Bit 7  
HLVL HINPOL  
HOVF HFH6  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
HFREQ_L 0008h  
HFREQ_H 0009h  
R
R
xxh  
xxh  
--  
HFH5  
HFL4  
HFH4  
HFL3  
HFH3  
HFL2  
HFH2  
HFL1  
HFH1  
HFL0  
HFH0  
Bit Name  
Description  
HLVL  
“ 1” : Indicates Hsync pin is high level.  
“ 0” : Indicates Hsync pin is low level.  
HINPOL  
“ 1” : Indicates Hsync input is positive polarity.  
“ 0” : Indicates Hsync input is negative polarity.  
HOVF  
Indicates H counter is overflowed (over 125KHz) when this bit is set.  
HFH6 …HFH0 Indicates the Hsync frequency in kHz.  
HFL4 … HFL0 When QUICK=” 0” , HFL4 ~ HFL0 indicates the Hsync frequency in 31.25Hz unit.  
When QUICK=” 1” , HFL4 ~ HFL1 indicates the Hsync frequency in 62.5Hz.  
Example of Hsync Frequency Calculation  
QUICK=”0”  
HFH6..0 HFL4..0 Max. Freq  
QUICK=”1”  
HFL4..0 Max. Freq Min. Freq  
Min. Freq  
HFH6..0  
$40h  
$40h  
$40h  
$40h  
$51h  
$51h  
$51h  
$51h  
$00000b 64.0313KHz 63.9687KHz  
$00001b 64.0625KHz 64.0000KHz  
$00010b 64.0938KHz 64.0312KHz  
$00011b 64.1250KHz 64.0625KHz  
$10000b 81.5313KHz 81.4687KHz  
$10001b 81.5625KHz 81.5000KHz  
$10010b 81.5938KHz 81.5312KHz  
$10011b 81.6250KHz 81.5625KHz  
$40h  
$0000xb 64.0625KHz 63.9375KHz  
$0001xb 64.1250KHz 64.0000KHz  
$1000xb 81.5625KHz 81.4375KHz  
$1001xb 81.6250KHz 81.5000KHz  
$40h  
$51h  
$51h  
Weltrend Semiconductor, Inc.  
Page 11  
WT62P1  
Data Sheet Rev. 1.01  
Vertical frequency counter  
A 13-bit counter is used to measure the time interval between two vertical sync pulses. It will be updated  
every vertical frame. The clock of this counter is 125kHz. So the frequency of Vsync is [125000 / (counter  
value + 1)] Hz. When V frequency is lower than 15.25Hz, this counter stops counting and set VOVF bit to  
“ 1” .  
Vertical Frequency Register  
Name  
Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
VFREQ_L 000Ah  
VFREQ_H 000Bh  
R
R
xxh  
xxh  
VF7  
VLVL  
VF6  
VF5  
VF4  
VF12  
VF3  
VF11  
VF2  
VF10  
VF1  
VF9  
VF0  
VF8  
VINPOL VOVF  
Bit Name  
Description  
VLVL  
“ 1” : Indicates Vsync pin is high level.  
“ 0” : Indicates Vsync pin is low level.  
VNPOL “ 1” : Indicates Vsync input is positive polarity.  
“ 0” : Indicates Vsync input is negative polarity.  
VOVF  
Indicates V counter is overflowed when this is set. Vsync frequency is lower than 15.25Hz  
VF12 ~ VF0 Indicates the Vertical Total Time. Vertical frequency is [125000 / (counter value +1) ] Hz  
Example of Vsync Frequency Calculation  
VF12..0 Max. Freq  
Min. Freq  
VF12..0  
Max. Freq Min. Freq  
$05BDh  
$05BEh  
$05BFh  
$0681h  
$0682h  
$0683h  
$06C7h  
$06C8h  
$06C9h  
85.15Hz  
85.092Hz  
85.034Hz  
75.12Hz  
75.075Hz  
75.03Hz  
72.088Hz  
72.046Hz  
72.005Hz  
85.034Hz  
84.976Hz  
84.918Hz  
75.03Hz  
74.985Hz  
74.94Hz  
72.005Hz  
71.963Hz  
71.921Hz  
$0783h  
$0784h  
$0785h  
$0823h  
$0824h  
$0825h  
$1FFEh  
$1FFEh  
$1FFFh  
65.036Hz 64.969Hz  
65.003Hz 64.935Hz  
64.969Hz 64.901Hz  
60.038Hz 59.981Hz  
60.01Hz  
59.952Hz  
59.981Hz 59.923Hz  
15.266Hz 15.262Hz  
15.264Hz 15.260Hz  
15.262Hz 15.258Hz  
Hsync period counter  
This is an 8-bit counter that uses 6MHz clock to measure time interval between two H pulses. If the H  
frequency is lower than 23437.5Hz, this counter will overflow and register H_PERD value is zero.  
Horizontal Period Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
H_PERD 000Ch xxh HPRD7 HPRD6 HPRD5 HPRD4 HPRD3 HPRD2 HPRD1 HPRD0  
R
Bit Name Description  
HPRD7 .. 0  
H freq = 6MHz / (counter value+1)  
Example of Hsync Frequency Calculation  
HPRD7..0 Max. Freq Min. Freq  
HPRD7..0 Max. Freq  
Min. Freq  
$49h  
$4Ah  
$4Bh  
$5Dh  
$5Eh  
$5Fh  
83.333KHz 81.081KHz  
82.192KHz 80KHz  
81.081KHz 78.947KHz  
65.217KHz 63.83KHz  
64.516KHz 63.158KHz  
$7Ch  
$7Dh  
$7Eh  
$BFh  
$C0h  
$C1h  
48.78KHz  
48.387KHz 47.619KHz  
48KHz 47.244KHz  
31.579KHz 31.25KHz  
31.414KHz 31.088KHz  
31.25KHz 30.928KHz  
48KHz  
63.83KHz  
62.5KHz  
Weltrend Semiconductor, Inc.  
Page 12  
WT62P1  
Data Sheet Rev. 1.01  
Composite Sync Signal Separator  
Composite sync signal separator extract Vsync signal from HIN or SOGIN input pin by filtering pulses  
which is less than 6us. The output Vsync signal will be widened about 5.5~6.5us. The output Hsync will  
be replaced by 2us pulse during Vsync pulse.  
The composite sync signal separator can handle H+V and H exclusive OR V signals. Fig.5 shows the  
timing relationship of the extracted H and V sync signals.  
If Hsync output do not want to insert pseudo H pulses (EXTRHS signal) during Vsync pulse, set BYPASS  
bit can let HOUT pin output waveform same as Hsync input (Note: polarity can be controlled by HOPOL  
bit).  
Hsync  
Vsync  
H+V  
H XOR V  
Bypass H pulse  
Insert H pulse  
Bypass H pulse  
EXTRHS  
EXTRVS  
2us  
2us  
5.5~6.5us  
Hsync  
Vsync  
H EORV  
Bypass H pulse  
Insert H pulse  
Bypass H pulse  
EXTRHS  
EXTRVS  
2us  
2us  
5.5~6.5us  
Fig. 6 Timing relationship of composite sync signal separator  
Weltrend Semiconductor, Inc.  
Page 13  
WT62P1  
Data Sheet Rev. 1.01  
Free-running sync signal and self-test pattern  
The self-generated free run sync signals are output from HOUT and VOUT pins when ENFREE bit is set.  
Four kinds of standard VESA timings are selected by FREE1 and FREE0 bits.  
Self-test pattern signal is output from PAT pin when ENPAT bit is set. PAT1 and PAT0 bits select  
different self-test pattern.  
PAT1 = 0 , PAT0 = 0  
FREE2,1,0 bit value  
PAT1 = 1 , PAT0 = 0  
PAT1 = 1 , PAT0 = 1  
PAT1 = 0 , PAT0 = 1  
Fig.7 Test Pattern  
X00  
X01  
010  
011  
110  
111  
FH  
FV  
THT  
TVT  
THS  
THB  
Hor frequency  
Ver frequency  
Hor total time  
Ver total time  
H sync time  
H Back porch +  
H Left border  
H Front porch +  
H Right border  
V sync time  
31.496KHz  
59.993Hz  
31.75us  
16.669ms 13.875ms  
3.833us  
2 us  
48KHz  
72.072Hz  
20.833us  
63.83KHz 81.25KHz 90.909KHz 106.195KHz  
59.878Hz  
15.667us  
16.7ms  
1us  
64.865Hz  
12.333us  
15.417ms 11.792ms 11.771ms  
1.083us  
1.833us  
84.8Hz  
11us  
84.96Hz  
9.417us  
2.417us  
1.417us  
1us  
1.583us  
0.833us  
1.417us  
2.417us  
THF  
0.708us  
1.125us  
0.542us  
0.375us  
0.375us  
0.292us  
TVS  
TVB  
2 x THT  
33 X THT  
6 x THT  
23 x THT  
3 x THT  
3 x THT  
3 x THT  
3 x THT  
V Back porch +  
V Top border  
V Front porch +  
V Bottom border  
38 x THT  
46 x THT  
44 x THT  
46 x THT  
TVF  
11 x THT  
38 x THT  
41.67ns  
3 x THT  
2 x THT  
2 x THT  
2 x THT  
TVIDEO Video pulse width 41.67ns  
41.67ns  
41.67ns  
41.67ns  
41.67ns  
THS  
THT  
HOUT  
VOUT  
TVS  
TVT  
THT  
THS  
HOUT  
PAT  
THB  
THB  
THF  
TVEDIO  
Fig.8 Free-running sync signal and test pattern timing  
Weltrend Semiconductor, Inc.  
Page 14  
WT62P1  
Data Sheet Rev. 1.01  
Clamp pulse  
Clamp pulse is generated on either rising or falling edge of HOUT pin by setting the CLPEG bit. The  
pulse width of clamp is specified by CLPPW bit. Output polarity is specified by CLPPO bit.  
HOUT  
0.542~0.625us/2.042~2.125us  
CLAMP  
CLPPO=1  
CLAMP  
CLPPO=0  
0.542~0.625us/2.042~2.125us  
Fig. 9a Clamp pulse waveform (CLPEG=1)  
HOUT  
0.542~0.625us/2.042~2.125us  
CLAMP  
CLPPO=1  
CLAMP  
CLPPO=0  
0.542~0.625us/2.042~2.125us  
Fig. 9b Clamp pulse waveform (CLPEG=0)  
Sync Processor Control Registers  
Name Addr R/W Initial Bit 7  
HV_CR1 0008h  
Bit 6  
00h ENHOUT ENVOUT HOPOL VOPOL  
00h ENCLP CLPEG CLPPO CLPPW FREE1  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
W
W
W
QUICK SEPART ENFREE ENPAT  
0009h  
000Ah  
FREE0  
SOG  
PAT1  
FREE2 BYPASS  
PAT0  
HV_CR2  
HV_CR3  
x0h  
--  
--  
--  
--  
--  
Bit Name  
Description  
ENHOUT  
ENVOUT  
HOPOL  
VOPOL  
QUICK  
“ 1” : Enable HOUT.  
“ 0” : Disable HOUT. Pin is configured as I/O port PD1.  
“ 1” : Enable VOUT.  
“ 0” : Disable VOUT. Pin is configured as I/O port PD0.  
“ 1” : HOUT is positive polarity.  
“ 0” : HOUT is negative polarity.  
“ 1” : VOUT is positive polarity.  
“ 0” : VOUT is negative polarity.  
“ 1” : Select 16ms time interval to count H pulses every 16.384ms.  
“ 0” : Select 32ms time interval to count H pulses every 32.768ms.  
SEPART  
“ 1” : Enable sync separator circuit and use the extracted Vsync signal as VOUT.  
“ 0” : VOUT pin outputs Vsync from VIN pin  
ENFREE  
ENPAT  
Enable free-running sync signal output on HOUT and VOUT pins when this bit is set.  
“ 1” : Enable self-test pattern output on PAT pin when this bit is set.  
“ 0” : Disable test pattern output. Pin is configured as I/O port PB3.  
“ 1” : Enable clamp pulse output on CLAMP pin.  
“ 0” : Disable clamp pulse output. Pin is configured as I/O port PA7.  
“ 1” : Clamp pulse follows HOUT signal’s rising edge.  
ENCLP  
CLPEG  
“ 0” : Clamp pulse follows HOUT signal’s falling edge.  
Weltrend Semiconductor, Inc.  
Page 15  
WT62P1  
Data Sheet Rev. 1.01  
CLPPO  
CLPPW  
Select polarity of clamp pulse.  
“ 1” : Positive polarity  
“ 0” : Negative polarity  
Select pulse width of clamp pulse.  
“ 1” : 2us  
“ 0” : 0.5us  
FREE2,1,0 Select free-running sync signal frequency.  
“ 111” : 1600x1200@85Hz  
H = 106.25kHz , V = 85Hz  
“ 110” : 1280x1024@85Hz  
H = 91kHz , V = 85Hz  
“ 011” : 1600x1200@65Hz  
H = 81kHz , V = 65Hz  
“ 010” : 1280x1024@60Hz  
H = 64kHz , V = 60Hz  
“ x01” : 800x600@72Hz  
H = 48kHz, V = 72Hz  
“ x00” : 640x480@60Hz  
H = 31.4kHz, V = 60Hz  
PAT1,0  
Select test pattern.  
“ 00” : White picture  
“ 01” : 2x2 cross hatch  
“ 10” : Black picture  
“ 11” : Inverse 2x2 cross hatch  
SOG  
Select composite sync signal input source.  
“ 1” : Composite sync signal comes from SOGIN pin.  
“ 0” : Composite sync signal comes from HIN pin.  
Select bypass the composite signal separator or not.  
BYPASS  
“ 1” : HOUT pin outputs sync signal bypass the composite signal separator.  
“ 0” : HOUT pin outputs sync signal from the composite signal separator.  
Weltrend Semiconductor, Inc.  
Page 16  
WT62P1  
Data Sheet Rev. 1.01  
Half Frequency Function  
When ENHLFIO bit is set, Pin PB1 becomes half frequency input (HLFI) and Pin PB0 becomes half  
frequency output (HLFO). The HALF bit controls the divided-by-two function is enabled or not.  
HLF_POL  
HLFO  
HALF  
D
C
Q
HLFI  
QN  
Fig. 10 Half Hsync frequency  
Half Frequency Output Control Register  
Name  
Addr R/W Initial  
Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
HLF_CON 000Dh W  
x0h  
--  
--  
--  
--  
--  
ENHFIO HALF HF_POL  
Bit Name  
Bit Description  
Enable half frequency input and output pins.  
ENHFIO  
“ 1” : PB1 and PB0 pins are half frequency input and output pins.  
“ 0” : PB1 and PB0 pins are I/O port.  
HALF  
“ 1” : HLFO pin outputs half frequency from HLFI pin.  
“ 0” : HLFO pin outputs same frequency from HLFI pin.  
“ 1” : HLFO polarity is not same as HLFI.  
HF_POL  
“ 0” : HLFO polarity is same as HLFI.  
Weltrend Semiconductor, Inc.  
Page 17  
WT62P1  
Data Sheet Rev. 1.01  
DDC Interface  
The DDC interface is a slave mode I2C interface with DDC1 function. It is compatible with VESA  
DDC1/2B standard. This interface not only can be used for DDC communication, but also can be applied  
for factory alignment purpose.  
When ENDDC bit is set, the outputs of SDA1 and SCL1 pins are open-drain type. The DDC function  
depends on the DDC2 bit value. If DDC2 bit is “ 0” , it is in DDC1 state. If DDC2 bit is “ 1” , it is in DDC2  
state  
In DDC1 state, the data is shifted out to SDA1 pin on the rising edge of VSYNC clock. Data format is an  
8-bit byte followed by a null bit (always “ 1” ). Most significant bit (MSB) is transmitted first. Every time  
when the ninth bit has been transmitted, the shift register will load a data byte from data buffer (DDC_TX  
register). After loading data to the shift register, the data buffer becomes empty and generates an  
interrupt. Program can check DDCRDY bit to load new data byte.  
If a high to low transition occurs on SCL1 in DDC1 state, the SCLH2L bit will be set and generate an  
interrupt. Program can set DDC2 bit to enter DDC2 state. If no valid DDC2 command is received within a  
certain time (for example, 128 Vsync clocks or 2sec), program should clear DDC2 bit and back to DDC1  
state to avoid noise interference.  
The data format of DDC2 is  
S
Address R/W A  
D7,D6,...., D0  
A
D7,D6,...., D0  
A
P
S : Start condition. A falling edge on SDA1 pin when SCL1 pin is high level.  
P : Stop condition. A rising edge on SDA1 pin when SCL1 pin is high level.  
A : Acknowledge bit. 0means acknowledge and 1means non-acknowledge.  
Address : 7-bit device address.  
R/W : Read/Write control bit, "1" is read and "0" is write.  
D7,D6,...., D0 : data byte.  
In DDC2 state, after START and valid address is received, it send out ACK(“ 0” ) if the TXNAK1 bit is “ 0” .  
Otherwise the SDA1 pin outputs NACK(” 1” ). An interrupt will be generated after sending ACK bit and  
SCL1 pin is pulled low to stop the clock for handshaking. In the interrupt routine, write DDC_AR0 register  
will stop pulling low the SCL1 pin and clear the interrupt. The received address byte can be read in  
DDC_RX register and also can use MATCH bit to identify what address is received. The Write or Read  
operation can be checked by reading the DDCRW bit.  
Write operation  
After received the first byte (address byte), interrupt routine finds it is the first byte (FIRST=1) and write  
operation (DDCRW=0), program should clear TX bit to “ 0” (for receiving data) and write DDC_AR0  
register (to release the SCL1 pin). Then the host sends out a data byte and SDA1 pin outputs ACK if  
TXNACK bit is “ 0” . An interrupt is generated after the ACK bit to inform CPU to read DDC_RX register.  
When host finished transferring data, it will send STOP condition. When STOP condition is detected, the  
STOP bit will be set and generates an interrupt. The interrupt routine can use the STOP bit to know the  
data transfer is finished and start executing the received command.  
Read operation  
After received the first byte (address byte), interrupt routine finds it is the first byte (FIRST=1) and read  
operation (DDCRW=1), program should set TX bit to “ 1” , write data to DDC_TX register and write  
DDC_AR0 register (to release the SCL1 pin). The host will output ACK after received a data byte. When  
host wants to finish reading, it outputs NACK to stop communication. Program can read the RXACK1 bit  
to check the acknowledge bit that host sends.  
Weltrend Semiconductor, Inc.  
Page 18  
WT62P1  
Data Sheet Rev. 1.01  
DDC1 Timing  
ꢀꢁꢂꢃꢄꢄꢅꢁꢃꢆꢇꢈꢉꢊꢋꢌꢆꢃꢍ  
ꢀꢁꢂꢃꢄ  
ꢁꢅꢆ  
N
N
N
ꢄꢅꢆꢅꢃꢈꢉꢉꢊꢈ  
ꢄꢅꢆꢅꢃꢈꢉꢉꢊꢈ  
ꢀꢁꢂꢁꢃꢄꢅꢆꢅꢃꢇ  
ꢀꢁꢂꢁꢃꢄꢅꢆꢅꢃꢋ  
ꢏꢍꢐꢔꢅꢔꢐꢃꢐꢅꢃꢍꢅꢕꢖꢂꢗꢃꢅꢁꢄꢘꢂꢕꢃꢄꢁ  
ꢇꢃꢈꢉ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢊꢋꢌꢅꢃꢍꢅꢎꢏꢄꢐꢁꢅꢑꢑꢒꢆꢑꢓ  
ꢖꢗꢘꢙꢚꢔꢀꢀꢁ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢊ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢊ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢊ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢍꢎꢏꢄꢊ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢍꢎꢏꢄꢊ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢍꢎꢏꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢊ  
ꢑꢒꢍꢁꢈꢄꢊ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢊ  
ꢑꢒꢍꢁꢈꢄꢊ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢊ  
ꢑꢒꢍꢁꢈꢄꢊ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢀꢎꢂꢃꢄꢄꢅꢁꢃꢆꢏꢃꢄꢄꢅꢎꢃꢆꢇꢈꢉꢊꢌꢆꢌꢏꢉꢃꢀꢐꢂꢃꢍ  
ꢀꢁꢂꢃꢄ  
ꢁꢅꢆ  
ꢁꢄꢊ  
N
ꢀꢁꢂꢁꢃꢄꢅꢆꢅ  
ꢀꢁꢂꢁꢃꢄꢅꢆꢅ  
ꢌꢍꢅꢎꢏꢃꢐꢄꢄꢑꢏꢒꢒ  
Pull low  
SCL  
START  
ꢇꢃꢈꢉ  
ꢕꢄꢃꢅꢒꢙꢆꢌꢚꢙꢛꢎꢏꢄꢐꢁꢅꢒꢙꢆꢌꢚꢙꢅꢃꢍꢅꢎꢏꢄꢐꢁꢅꢑꢑꢒꢆꢑꢓ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢊ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢅ  
ꢀꢀꢁꢉꢄꢅ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢍꢎꢏꢄꢊ  
ꢋꢌꢂꢆꢍꢄꢅ  
ꢆꢍꢎꢏꢄꢊ  
ꢋꢌꢂꢆꢍꢄꢅ  
ꢆꢍꢎꢏꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢊ  
ꢑꢒꢍꢁꢈꢄꢊ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢊ  
ꢑꢒꢍꢁꢈꢄꢊ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢊ  
ꢑꢒꢍꢁꢈꢄꢊꢛꢅ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢀꢑꢂꢃꢄꢄꢅꢁꢃꢆꢏꢃꢄꢄꢅꢎꢃꢆꢇꢈꢉꢊꢌꢆꢌꢏꢉꢃꢀꢐꢐꢂꢃꢍ  
START  
ꢀꢁꢂꢃꢄ  
ꢝ ꢜ  
ꢌꢍꢅꢎꢏꢃꢐꢄꢄꢑꢏꢒꢒ  
ꢁꢅꢆ  
ꢁꢄꢊ  
N
ꢀꢁꢂꢁꢃꢄꢅꢆꢅ  
ꢀꢁꢂꢁꢃꢄꢅꢆꢅ  
Pull low  
SCL  
ꢇꢃꢈꢉ  
ꢕꢄꢃꢅꢒꢙꢆꢌꢚꢙꢛꢎꢏꢄꢐꢁꢅꢒꢙꢆꢌꢚꢙꢅꢃꢍꢅꢎꢏꢄꢐꢁꢅꢑꢑꢒꢆꢑꢓ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢊ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢅ  
ꢀꢀꢁꢉꢄꢅ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢋꢌꢂꢆꢍꢄꢅ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢍꢎꢏꢄꢊ  
ꢋꢌꢂꢆꢍꢄꢅ  
ꢆꢍꢎꢏꢄꢊ  
ꢆꢍꢎꢏꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢊ  
ꢑꢒꢍꢁꢈꢄꢊ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢊ  
ꢑꢒꢍꢁꢈꢄꢊ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢊ  
ꢑꢒꢍꢁꢈꢄꢊꢛꢅ  
ꢂꢓꢔꢁꢕꢅꢄꢊ  
Weltrend Semiconductor, Inc.  
Page 19  
WT62P1  
Data Sheet Rev. 1.01  
DDC2 Timing  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢃꢉꢊꢋꢈꢃꢌ  
START  
Pull low  
SCL  
Pull low  
SCL  
Pull low  
SCL  
STO  
P
ꢀꢁꢂ  
ꢀꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢇꢈꢄꢉꢉ  
ꢊꢋꢅꢌꢆꢍꢆꢅꢎ  
ꢊꢋꢅꢌꢆꢍꢆꢅꢏ  
ꢂꢃꢀꢄꢅꢆꢇꢈꢆꢇ  
ꢅꢆꢇꢈ  
A
A
A
ꢉꢊꢋꢇꢌꢄꢍꢎꢏꢐꢑꢒꢓꢄꢇꢅꢄꢊꢌꢔꢌꢕꢖꢌꢄꢂꢗꢘ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢋꢌꢂꢆꢍꢄꢅ  
ꢆꢍꢎꢏꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢊ  
ꢑꢒꢍꢁꢈꢄꢊꢛꢅ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢍꢎꢏꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢊ  
ꢑꢒꢍꢁꢈꢄꢊꢛꢅ ꢑꢒꢍꢁꢈꢄꢊꢛꢅ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢍꢎꢏꢄꢅ  
ꢀꢀꢁꢉꢂꢐꢄꢊ  
ꢆꢍꢎꢏꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢊ  
ꢑꢒꢍꢁꢈꢄꢊꢛꢅ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢀꢑꢂꢃꢎꢈꢏꢋꢃꢉꢊꢋꢈꢃꢀꢐꢂꢃꢌ  
START  
Pull low  
SCL  
Pull low  
SCL  
Pull low  
SCL  
STO  
P
ꢀꢁꢂ  
ꢀꢃꢄ  
ꢂꢃꢀꢄꢅꢆꢇꢈꢆꢇ  
ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢇꢈꢄꢉꢉ  
ꢍꢋꢅꢌꢆꢍꢆꢅꢎ  
ꢍꢋꢅꢌꢆꢍꢆꢅꢎ  
ꢙꢙꢆꢚꢍꢙꢇꢉ  
ꢍꢋꢅꢌꢆꢍꢆꢅꢏ  
ꢍꢋꢅꢌꢆꢍꢆꢅꢏ  
A
ꢉꢊꢋꢇꢌꢄꢍꢎꢏꢐꢑꢒꢓꢄꢇꢅꢄꢊꢌꢔꢌꢕꢖꢌꢄꢂꢗꢘ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢋꢌꢂꢆꢍꢄꢅ  
ꢆꢍꢎꢏꢄꢊ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢍꢎꢏꢄꢊ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢍꢎꢏꢄꢊ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢍꢎꢏꢄꢅ  
ꢀꢀꢁꢉꢂꢐꢄꢅ  
ꢑꢒꢍꢁꢈꢄꢊꢛꢅ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢅ  
ꢑꢒꢍꢁꢈꢄꢊꢛꢅ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢅ  
ꢑꢒꢍꢁꢈꢄꢊꢛꢅ ꢑꢒꢍꢁꢈꢄꢊꢛꢅ  
ꢀꢀꢁꢉꢂꢐꢄꢅ  
ꢂꢓꢔꢒꢕꢅꢄꢅ  
ꢂꢓꢔꢒꢕꢅꢄꢅ  
ꢀꢍꢂꢃꢎꢈꢏꢋꢃꢉꢊꢋꢈꢃꢀꢐꢐꢂꢃꢌ  
START  
Pull low  
SCL  
Pull low  
SCL  
Pull low  
SCL  
STO  
P
ꢀꢁꢂ  
ꢀꢃꢄ  
ꢂꢃꢀꢄꢅꢆꢇꢈꢆꢇ  
ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢇꢈꢄꢉꢉ  
ꢊꢋꢅꢌꢆꢍꢆ  
ꢍꢋꢅꢌꢆꢍꢆ  
ꢍꢋꢅꢌꢆꢍꢆ  
ꢙꢙꢆꢚꢍꢙꢇꢉ  
A
A
ꢉꢊꢋꢇꢌꢄꢍꢎꢏꢐꢑꢒꢓꢄꢇꢅꢄꢊꢌꢔꢌꢕꢖꢌꢄꢂꢗꢘ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢀꢀꢁꢂꢀꢃꢄꢅ  
ꢆꢁꢇꢈꢉꢇꢄꢊ  
ꢀꢀꢁꢉꢄꢅ  
ꢋꢌꢂꢆꢍꢄꢅ  
ꢆꢍꢎꢏꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢅ  
ꢑꢒꢍꢁꢈꢄꢊꢛꢅ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢍꢎꢏꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢅ  
ꢑꢒꢍꢁꢈꢄꢊꢛꢅ  
ꢂꢓꢔꢒꢕꢅꢄꢊ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢍꢎꢏꢄꢊ  
ꢀꢀꢁꢉꢂꢐꢄꢅ  
ꢑꢒꢍꢁꢈꢄꢊꢛꢅ ꢑꢒꢍꢁꢈꢄꢊꢛꢅ  
ꢂꢓꢔꢒꢕꢅꢄꢅ ꢂꢓꢔꢒꢕꢅꢄꢅ  
ꢋꢌꢂꢆꢍꢄꢊ  
ꢆꢍꢎꢏꢄꢅ  
ꢀꢀꢁꢉꢂꢐꢄꢅ  
Weltrend Semiconductor, Inc.  
Page 20  
WT62P1  
Data Sheet Rev. 1.01  
DDC Receive Buffer Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DDC_RX 0014h  
R
FFh  
DRX7  
DRX6  
DRX5  
DRX4  
DRX3  
DRX2  
DRX1  
DRX0  
Bit Name  
Description  
DRX7 … DRX0 DDC received data is stored in this register.  
DDC Transmit Buffer Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DDC_TX 0014h  
W
FFh  
DTX7  
DTX6  
DTX5  
DTX4  
DTX3  
DTX2  
DTX1  
DTX0  
Bit Name  
Description  
DTX7 … DTX0 This register stores the data to be transmitted  
DDC Status Register  
Name  
Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DDC_STA 0015h  
R
01h DDCRDY SCLH2L DDC2  
FIRST  
STOP DDC2RW MATCH RXNAK1  
Bit Name  
Description  
DDCRDY When it is set, data buffer is ready to read/write or a SCL1 high to low transition in DDC1  
state.  
SCLH2L  
Indicates a high to low transition on SCL1 pin in DDC1 state when it is set.  
DDC2(R) “ 1” : Indicates it is in DDC2 state.  
“ 0” : Indicates it is in DDC1 state.  
FIRST  
STOP  
Indicates the first byte (address) is received when this bit is set.  
Indicates STOP condition is received when this bit is set.  
DDC2RW Indicates the received R/W bit after 7-bit address.  
“ 1” : Read  
“ 0” : Write  
MATCH  
“ 1” : Address is equal to Address Register 1.  
“ 0” : The most significant 4 bits are equal to Address Register 0.  
Indicates the received acknowledge bit.  
“ 1” : NACK  
RXNAK1  
“ 0” : ACK  
DDC Control Register  
Name  
Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DDC_CON 0015h  
W
00h ENDDC CLRH2L DDC2  
--  
--  
TX  
--  
TXNAK1  
Bit Name  
Description  
ENDDC  
“ 1” : Enable DDC interface. PA0 and PA1 are configured as DDC interface.  
“ 0” : Disable DDC interface. PA0 and PA1 are configured as I/O port.  
Set this bit will reset SCLH2L bit.  
CLRH2L  
DDC2(W) “ 1” : Set DDC2.  
“ 0” : Set DDC1.  
TX  
“ 1” : Set transmit direction.  
“ 0” : Set receive direction.  
Determines the ACK bit to be transmitted.  
“ 1” : Transmit NACK.  
TXNAK1  
“ 0” : Transmit ACK.  
Weltrend Semiconductor, Inc.  
Page 21  
WT62P1  
Data Sheet Rev. 1.01  
DDC Address Register 0  
Name  
Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DDC_AR0 0016h  
W
x0h DAR07 DAR06 DAR05 DAR04  
--  
--  
--  
ENAR0  
Bit Name  
Description  
DAR07~  
DAR04  
ENAR0  
4-bit DDC address to be compared. DAR07 is compared with the MSB of the received  
address.  
Enable DAR07- DAR04 to be compared when this bit is set.  
DDC Address Register 1  
Name  
Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DDC_AR1 0017h  
W
x0h DAR17 DAR16 DAR15 DAR14 DAR13 DAR12 DAR11 ENAR1  
Bit Name  
Description  
DAR17~  
DAR11  
ENAR1  
7-bit DDC address to be compared. DAR17 is compared with the MSB of the received  
address.  
Enable DAR17- DAR11 to be compared when this bit is set.  
Weltrend Semiconductor, Inc.  
Page 22  
WT62P1  
Data Sheet Rev. 1.01  
DDC Flow Chart  
ꢀꢁꢂꢃꢁ  
ꢀꢄꢖꢅꢗꢘꢋꢋꢌꢑꢒꢓꢙꢚꢛꢕ  
ꢀꢁꢂꢃꢄꢅꢆꢅꢂꢇꢇꢈꢄꢀꢀꢅꢉꢊꢋꢋꢌꢍꢎꢏꢐꢑꢒꢓꢔꢕ  
ꢀꢁꢂꢃꢄꢅꢆꢆꢅꢂꢇꢇꢈꢄꢀꢀꢅꢉꢊꢋꢋꢌꢍꢎꢏꢓꢑꢒꢓꢛꢕ  
ꢀꢁ  
ꢋꢋꢌꢏꢋꢜꢑꢏꢓꢙꢚꢛꢕꢉꢓꢝ  
ꢂꢃꢄ  
ꢀꢁ  
ꢋꢋꢌ"ꢑꢏꢓꢙꢚꢙꢕꢉꢓꢝ  
ꢂꢃꢄ  
ꢀꢀꢁꢂꢂꢃ  
ꢋꢋꢌꢅꢇꢂꢖꢂꢅꢉꢊꢅꢋꢋꢌꢍ-/ꢑꢒꢓ.ꢕ  
ꢀꢁ  
ꢞꢌ !" ꢑꢏꢓꢙꢚꢔꢕꢉꢓꢝ  
ꢀꢁ  
ꢞꢌ !" ꢑꢏꢓꢙꢚꢔꢕꢉꢓꢝ  
ꢂꢃꢄ  
ꢂꢃꢄ  
ꢀꢄꢖꢅꢌ ꢏ!" ꢑꢒꢓꢙꢚꢔꢕꢅ#ꢅꢋꢋꢌ"ꢑꢒꢓꢙꢚꢙꢕ  
$ꢓꢓꢓꢐꢐꢐꢐꢐ%ꢅꢉꢊꢅꢒꢓꢙ  
ꢀꢀꢁꢂꢃꢄꢅꢃꢀꢀꢁꢆ  
*ꢁꢄꢂꢈꢅꢌ ꢏ!" ꢑꢒꢓꢙꢚꢔꢕ  
$ꢓꢐꢓꢐꢐꢐꢐꢐ%ꢅꢉꢊꢅꢒꢓꢙ  
ꢂꢃꢄ  
ꢋꢋꢌꢏꢋꢜꢑꢏꢓꢙꢚꢛꢕꢉꢓꢝ  
ꢀꢁ  
ꢀꢁ  
ꢓ"&ꢅ'ꢀ()*ꢅ+ꢈꢅ"ꢅꢀꢅꢝ  
ꢂꢃꢄ  
*ꢁꢄꢂꢈꢅꢋꢋꢌ"ꢑꢒꢓꢙꢚꢙꢕ  
$ꢓꢐꢐꢐꢐꢐꢐꢐ%ꢅꢉꢊꢅꢒꢓꢙ  
ꢀꢁ  
9ꢎ-ꢌ!ꢑꢏꢓꢙꢚꢓꢕꢉꢐꢝ  
ꢀꢀꢁꢂꢂꢄ  
ꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆꢆꢅꢂꢇꢇꢈꢄꢀꢀꢅꢀ456ꢈ+7ꢈꢂ8  
ꢀꢁ  
,ꢆꢏꢞ-ꢑꢏꢓꢙꢚ.ꢕꢉꢓꢝ  
ꢂꢃꢄ  
ꢀꢁ  
ꢞ-01ꢑꢏꢓꢙꢚ2ꢕꢉꢓꢝ  
ꢈꢄꢂꢇꢅꢋꢋꢌꢍꢏ/ꢑꢏꢓ.ꢕ  
ꢀꢁꢂꢃꢄꢅꢆꢅꢂꢇꢇꢈꢄꢀꢀꢉꢎꢐꢅ+ꢈꢅꢎ"+ꢈꢅꢎ.ꢅ+ꢈꢅꢎꢔ  
ꢂꢃꢄ  
ꢀꢁ  
ꢋꢋꢌ"ꢏꢒꢑꢏꢓꢙꢚ"ꢕꢉꢓꢝ  
ꢀꢁꢂꢃꢄꢅꢆꢅꢂꢇꢇꢈꢄꢀꢀꢉꢊꢋꢋꢌꢍꢎꢏꢐꢑꢒꢓꢔꢕ  
ꢀꢁ  
ꢂꢃꢄ  
ꢋꢋꢌ"ꢏꢒꢑꢏꢓꢙꢚ"ꢕꢉꢓꢝ  
ꢈꢄꢂꢇꢅꢋꢋꢌꢍꢏ/ꢑꢏꢓ.ꢕ  
ꢂꢃꢄ  
ꢀꢁ  
ꢏ/ꢘꢎꢌ3ꢓꢑꢏꢓꢙꢚꢐꢕꢉꢐꢝ  
ꢀꢁꢂꢃꢄꢅꢆꢅꢂꢇꢇꢈꢄꢀꢀꢉꢊꢋꢋꢌꢍꢎꢏꢐꢑꢒꢓꢔꢕ  
ꢀꢄꢖꢅ-/ꢑꢒꢓꢙꢚ"ꢕ  
ꢂꢃꢄ  
ꢋꢋꢌꢅꢇꢂꢖꢂꢅꢉꢊꢅꢋꢋꢌꢍ-/ꢑꢒꢓ.ꢕ  
ꢋꢋꢌꢅꢇꢂꢖꢂꢅꢉꢊꢅꢋꢋꢌꢍ-/ꢑꢒꢓ.ꢕ  
ꢀꢁꢂꢃꢄꢅꢆꢅꢂꢇꢇꢈꢄꢀꢀꢉꢊꢋꢋꢌꢍꢎꢏꢐꢑꢒꢓꢔꢕ  
ꢀꢁꢂꢃꢄꢅꢆꢅꢂꢇꢇꢈꢄꢀꢀꢉꢊꢋꢋꢌꢍꢎꢏꢐꢑꢒꢓꢔꢕ  
Weltrend Semiconductor, Inc.  
Page 23  
WT62P1  
Data Sheet Rev. 1.01  
Master/Slave I2C interface  
The master/slave I2C interface is provided for communicating with other I2C devices in the monitor such  
as EEPROM, OSD, deflection IC and so on.  
Master Mode  
To choose master mode, clear the SLAVE bit. The clock frequency can be programmed to 50KHz,  
100kHz, 200kHz or 400KHz by setting MCLK1 and MCLK2 bits.  
Send out START and the first byte (START, 7-bit address and R/W bit)  
First, clear I2CRW bit to select transmitter mode and write first byte (7-bit address and R/W bit) to  
MI2C_TX register. Then set MSTR bit, master will generate a START condition and send out the first  
byte with the clock speed specified in MCLK1 and MCLK2 bits. After the whole data byte is transmitted  
and the 9th bit is received, the MI2CRDY bit is set and generates an interrupt if it is enabled. The 9th bit  
will be stored in RXNAK2 bit for checking the slave acknowledge or not. The SCL2 pin will keep low to  
wait next byte operation.  
Send out the following bytes  
If it is a write command, write a data byte to MI2C_TX register, then write any value to I2C_AR register to  
clear MI2CRDY bit. It will send out the data byte and store the acknowledge bit from slave in RXACK2 bit.  
Again, the MI2CRDY bit is set after the acknowledge bit is received.  
If it is a read command, set I2CRW bit to be receiver mode and write TXACK2 bit to determine what will  
be sent on acknowledge bit, then write MI2C_AR register to clear I2CRDY bit and it will send out the  
clock for receiving next byte. After the acknowledge bit is transmitted, the I2CRDY bit will be set. If  
master wants to stop the read operation, send NACK on acknowledge bit to inform slave device.  
Send out STOP  
Set MSTOP bit will generate STOP condition.  
Slave Mode  
The slave mode operation is same as DDC interface in DDC2 state. First, set the SLAVE bit and set the  
I2CRW bit to be receiver mode. When CPU is ready to receive, clear TXNAK2 bit. It will response ACK  
when a START condition followed by an address (which is equal to I2C_ADR register) are received. An  
interrupt can be generated if it is enabled and the R/W bit is stored in SRW bit for checking read/write  
operation. After the ACK bit, SCL2 pin outputs low level to stop the clock for handshaking.  
If a write command is received (SRW bit=0), read the I2C_RX register, clear I2CRW bit to receive next  
byte, then write I2C_ADR to clear I2CRDY bit and stop pulling low the SCL2 pin for receiving next byte  
from master. The output acknowledge bit is controlled by TX NAK2 bit.  
If a read command is received (SRW bit=1), write data to I2C_TX register, clear I2CRW bit and write  
I2C_ADR register to clear I2CRDY bit and stop pulling low the SCL2 pin for master sending out clock  
The received acknowledge bit is stored in RXNAK2 bit.  
Weltrend Semiconductor, Inc.  
Page 24  
WT62P1  
Data Sheet Rev. 1.01  
Master I2C Data Sequence  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢃꢉꢊꢋꢈꢃꢌ  
ꢇꢊꢋꢌꢊ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢇꢊꢍꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢇꢈꢄꢉꢉ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢇꢈꢄꢉꢉ  
ꢊꢋꢅꢌꢆꢊꢆꢅꢍ  
ꢊꢋꢅꢌꢆꢊꢆꢅꢍ  
ꢊꢋꢅꢌꢆꢊꢆꢅꢎ  
ꢊꢋꢅꢌꢆꢊꢆꢅꢎ  
ꢂꢃꢄꢀꢅꢆꢇꢈꢉꢇꢈ  
ꢆꢇꢂꢈꢄꢉ  
ꢀꢀꢁꢂꢃ  
ꢀꢀꢁꢂꢃꢀꢀꢁꢋꢈ  
ꢀꢁꢋꢌꢍ  
ꢊꢋꢌꢈꢍꢅꢎꢏꢐꢑꢒꢓꢔꢅꢈꢆꢅꢋꢍꢕꢍꢖꢗꢍꢅꢂꢃꢘꢙ  
ꢄꢄꢅꢆ  
ꢇꢈꢉꢊꢋꢌꢅꢍ  
ꢎꢌꢏꢇꢐꢑꢅꢆ  
ꢄꢄꢅꢆ  
ꢇꢈꢉꢊꢋꢌꢅꢍ  
ꢎꢌꢏꢇꢐꢑꢅꢆ  
ꢄꢄꢅꢆ  
ꢇꢈꢉꢊꢋꢌꢅꢍ  
ꢎꢌꢏꢇꢐꢑꢅꢆ  
ꢄꢄꢅꢍ  
ꢀꢑꢂꢃꢎꢈꢏꢋꢃꢉꢊꢋꢈꢃꢀꢐꢂꢃꢌ  
ꢇꢊꢋꢌꢊ  
ꢇꢊꢍꢀ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢀꢁꢂꢃ  
ꢀꢁꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢇꢈꢄꢉꢉ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢇꢈꢄꢉꢉ  
ꢏꢋꢅꢌꢆꢊꢆꢅꢍ  
ꢏꢋꢅꢌꢆꢊꢆꢅꢎ  
ꢂꢃꢄꢀꢅꢆꢇꢈꢉꢇꢈ  
ꢆꢇꢂꢈꢄꢉ  
ꢀꢀꢁꢂꢃ  
ꢀꢀꢁꢂꢃꢀꢆꢇꢂꢈꢊ  
ꢀꢀꢁꢂꢃꢀꢋꢎꢏꢅꢐꢇ  
ꢀꢀꢁꢂꢃꢀꢀꢁꢋꢈ  
ꢀꢁꢋꢌꢍ  
ꢊꢋꢌꢈꢍꢅꢎꢏꢐꢑꢒꢓꢔꢅꢈꢆꢅꢋꢍꢕꢍꢖꢗꢍꢅꢂꢃꢘꢙ  
ꢄꢄꢅꢆ  
ꢇꢈꢉꢊꢋꢌꢅꢍ  
ꢎꢌꢏꢇꢐꢑꢅꢆ  
ꢄꢄꢅꢆ  
ꢇꢈꢉꢊꢋꢌꢅꢍ  
ꢎꢌꢏꢇꢐꢑꢅꢆ  
ꢄꢄꢅꢆ  
ꢇꢈꢉꢊꢋꢌꢅꢆ  
ꢎꢌꢏꢇꢐꢑꢅꢆ  
ꢄꢄꢅꢍ  
ꢀꢍꢂꢃꢎꢈꢏꢋꢃꢉꢊꢋꢈꢃꢀꢐꢐꢂꢃꢌ  
ꢇꢊꢋꢌꢊ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢇꢊꢍꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢇꢈꢄꢉꢉ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢇꢈꢄꢉꢉ  
ꢊꢋꢅꢌꢆꢊꢆ  
ꢊꢋꢅꢌꢆꢊꢆ  
ꢏꢋꢅꢌꢆꢊꢆ  
ꢂꢃꢄꢀꢅꢆꢇꢈꢉꢇꢈ  
ꢆꢇꢂꢈꢄꢉ  
ꢀꢀꢁꢂꢃꢀꢆꢇꢂꢈꢊ  
ꢀꢀꢁꢂꢃ  
ꢀꢀꢁꢂꢃꢀꢀꢁꢋꢈ  
ꢀꢀꢁꢂꢃꢀꢋꢎꢏꢅꢐꢇ  
ꢀꢁꢋꢌꢍ  
ꢊꢋꢌꢈꢍꢅꢎꢏꢐꢑꢒꢓꢔꢅꢈꢆꢅꢋꢍꢕꢍꢖꢗꢍꢅꢂꢃꢘꢙ  
ꢄꢄꢅꢆ  
ꢇꢈꢉꢊꢋꢌꢅꢍ  
ꢎꢌꢏꢇꢐꢑꢅꢆ  
ꢄꢄꢅꢆ  
ꢇꢈꢉꢊꢋꢌꢅꢍ  
ꢎꢌꢏꢇꢐꢑꢅꢆ  
ꢄꢄꢅꢆ  
ꢇꢈꢉꢊꢋꢌꢅꢆ  
ꢎꢌꢏꢇꢐꢑꢅꢆ  
ꢄꢄꢅꢍ  
Weltrend Semiconductor, Inc.  
Page 25  
WT62P1  
Data Sheet Rev. 1.01  
Slave I2C Data Sequence  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢃꢉꢊꢋꢈꢃꢌ  
ꢇꢊꢋꢌꢊ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢇꢊꢍꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢇꢈꢄꢉꢉ  
ꢊꢋꢅꢌꢆꢍꢆꢅꢎ  
ꢊꢋꢅꢌꢆꢍꢆꢅꢏ  
ꢂꢃꢄꢀꢅꢆꢇꢈꢉꢇꢈ  
ꢆꢇꢂꢈꢄꢉ  
ꢊꢋꢌꢈꢍꢅꢎꢏꢐꢑꢒꢓꢔꢅꢈꢆꢅꢋꢍꢕꢍꢖꢗꢍꢅꢂꢃꢘꢙ  
ꢀꢀꢁꢂ  
ꢃꢄꢅꢆꢃꢇꢁꢂ  
ꢃꢃꢇꢈꢉꢁꢊ  
ꢃꢆꢋꢁꢊ  
ꢆꢌꢍꢎꢏꢐꢁꢊ  
ꢅꢐꢑꢆꢒꢓꢁꢂ  
ꢀꢀꢁꢂ  
ꢃꢄꢅꢆꢃꢇꢁꢊ  
ꢃꢃꢇꢈꢉꢁꢊ  
ꢃꢆꢋꢁꢊ  
ꢆꢌꢍꢎꢏꢐꢁꢊ  
ꢅꢐꢑꢆꢒꢓꢁꢂ  
ꢀꢀꢁꢂ  
ꢀꢀꢁꢂ  
ꢃꢄꢅꢆꢃꢇꢁꢊ  
ꢃꢃꢇꢈꢉꢁꢊ  
ꢃꢆꢋꢁꢊ  
ꢆꢌꢍꢎꢏꢐꢁꢊ  
ꢅꢐꢑꢆꢒꢓꢁꢂ  
ꢃꢄꢅꢆꢃꢇꢁꢊ  
ꢃꢃꢇꢈꢉꢁꢂ  
ꢃꢆꢋꢁꢊ  
ꢆꢌꢍꢎꢏꢐꢁꢊ  
ꢅꢐꢑꢆꢒꢓꢁꢂ  
ꢀꢑꢂꢃꢎꢈꢏꢋꢃꢉꢊꢋꢈꢃꢀꢐꢂꢃꢌ  
ꢇꢊꢋꢌꢊ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢇꢊꢍꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢇꢈꢄꢉꢉ  
ꢍꢋꢅꢌꢆꢍꢆꢅꢎ  
ꢍꢋꢅꢌꢆꢍꢆꢅꢎ  
ꢍꢋꢅꢌꢆꢍꢆꢅꢏ  
ꢍꢋꢅꢌꢆꢍꢆꢅꢏ  
ꢂꢃꢄꢀꢅꢆꢇꢈꢉꢇꢈ  
ꢆꢇꢂꢈꢄꢉ  
ꢔꢔꢃꢕꢇꢔꢆꢇꢂꢈꢊ  
ꢊꢋꢌꢈꢍꢅꢎꢏꢐꢑꢒꢓꢔꢅꢈꢆꢅꢋꢍꢕꢍꢖꢗꢍꢅꢂꢃꢘꢙ  
ꢀꢀꢁꢂ  
ꢀꢀꢁꢂ  
ꢃꢄꢅꢆꢃꢇꢁꢊ  
ꢃꢃꢇꢈꢉꢁꢊ  
ꢃꢆꢋꢁꢂ  
ꢆꢌꢍꢎꢏꢐꢁꢊ  
ꢅꢐꢑꢆꢒꢓꢁꢂ  
ꢀꢀꢁꢂ  
ꢃꢄꢅꢆꢃꢇꢁꢊ  
ꢃꢃꢇꢈꢉꢁꢊ  
ꢃꢆꢋꢁꢂ  
ꢆꢌꢍꢎꢏꢐꢁꢂ  
ꢅꢐꢑꢆꢒꢓꢁꢂ  
ꢀꢀꢁꢂ  
ꢃꢄꢅꢆꢃꢇꢁꢊ  
ꢃꢃꢇꢈꢉꢁꢂ  
ꢃꢆꢋꢁꢂ  
ꢆꢌꢍꢎꢏꢐꢁꢂ  
ꢅꢐꢑꢆꢒꢓꢁꢂ  
ꢃꢄꢅꢆꢃꢇꢁꢂ  
ꢃꢃꢇꢈꢉꢁꢊ  
ꢃꢆꢋꢁꢂ  
ꢆꢌꢍꢎꢏꢐꢁꢊ  
ꢅꢐꢑꢆꢒꢓꢁꢂ  
ꢀꢍꢂꢃꢎꢈꢏꢋꢃꢉꢊꢋꢈꢃꢀꢐꢐꢂꢃꢌ  
ꢇꢊꢋꢌꢊ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ  
ꢀꢁꢂꢂꢃꢂꢄꢅꢃꢆꢇꢈꢉ ꢇꢊꢍꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢇꢈꢄꢉꢉ  
ꢊꢋꢅꢌꢆꢍꢆ  
ꢍꢋꢅꢌꢆꢍꢆ  
ꢍꢋꢅꢌꢆꢍꢆ  
ꢂꢃꢄꢀꢅꢆꢇꢈꢉꢇꢈ  
ꢆꢇꢂꢈꢄꢉ  
ꢔꢔꢃꢕꢇꢔꢆꢇꢂꢈꢊ  
ꢊꢋꢌꢈꢍꢅꢎꢏꢐꢑꢒꢓꢔꢅꢈꢆꢅꢋꢍꢕꢍꢖꢗꢍꢅꢂꢃꢘꢙ  
ꢀꢀꢁꢂ  
ꢃꢄꢅꢆꢃꢇꢁꢂ  
ꢃꢃꢇꢈꢉꢁꢊ  
ꢃꢆꢋꢁꢂ  
ꢀꢀꢁꢂ  
ꢃꢄꢅꢆꢃꢇꢁꢊ  
ꢃꢃꢇꢈꢉꢁꢊ  
ꢃꢆꢋꢁꢂ  
ꢀꢀꢁꢂ  
ꢀꢀꢁꢂ  
ꢃꢄꢅꢆꢃꢇꢁꢊ  
ꢃꢃꢇꢈꢉꢁꢊ  
ꢃꢆꢋꢁꢂ  
ꢃꢄꢅꢆꢃꢇꢁꢊ  
ꢃꢃꢇꢈꢉꢁꢂ  
ꢃꢆꢋꢁꢂ  
ꢆꢌꢍꢎꢏꢐꢁꢊ  
ꢅꢐꢑꢆꢒꢓꢁꢂ  
ꢆꢌꢍꢎꢏꢐꢁꢊ  
ꢅꢐꢑꢆꢒꢓꢁꢂ  
ꢆꢌꢍꢎꢏꢐꢁꢂ  
ꢅꢐꢑꢆꢒꢓꢁꢂ  
ꢆꢌꢍꢎꢏꢐꢁꢂ  
ꢅꢐꢑꢆꢒꢓꢁꢂ  
Weltrend Semiconductor, Inc.  
Page 26  
WT62P1  
Data Sheet Rev. 1.01  
I2C interface Status Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C_STA 0010h  
R
22h  
--  
--  
BB  
SFIRST SSTOP  
SRW  
RXNAK2 I2CRDY  
Bit Name  
Description  
BB  
“ 1” : Bus busy.  
“ 0” : Bus idle. Both SDA2 and SCL2 pins keep in high level for 5us after STOP condition.  
This bit is set when received START and first byte in slave mode.  
This bit is set when received STOP condition in slave mode.  
Received R/W bit in slave mode.  
SFIRST  
SSTOP  
SRW  
“ 1” : Read command is received.  
“ 0” : Write command is received.  
RXNAK2  
I2CRDY  
“ 1” : NACK is received.  
“ 0” : ACK is received.  
This bit is set when a byte is received, transmitted or STOP condition is detected.  
I2C interface Control Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C_CON 0010h  
W
02h  
ENI2C  
MCLK1 MCLK0  
MSTR  
MSTOP I2CRW TXNAK2 SLAVE  
Bit Name  
Description  
ENI2C  
“ 1” : Enable I2C interface.  
“ 0” : Pin PB5 and pin PB4 are I/O port.  
MCLK1,0 Select SCL clock in master mode  
“ 00” : 400KHz  
“ 01” : 100KHz  
“ 11” : 200KHz  
“ 10” : 50KHz  
MSTR  
MSTOP  
I2CRW  
Output START condition in master mode when this bit is set.  
Output STOP condition in master mode when this bit is set.  
“ 0” : Transmitter , “ 1” : Receiver in master mode.  
“ 1” : Transmitter , “ 0” : Receiver in slave mode  
(“ 0” : I2C write mode, “ 1” : I2C read mode. )  
“ 1” : Output NACK.  
TXNAK2  
SLAVE  
“ 0” : Output ACK. It will pull low the SDA2 pin on acknowledge bit.  
“ 1” : Slave mode.  
“ 0” : Master mode.  
I2C interface Transmit/Receive Buffer Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C_TX 0011h  
I2C_RX 0011h  
W
R
xxh  
xxh  
MTX7  
MRX7  
MTX6  
MRX6  
MTX5  
MRX5  
MTX4  
MRX4  
MTX3  
MRX3  
MTX2  
MRX2  
MTX1  
MRX1  
MTX0  
MRX0  
I2C interface Address Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C_ADR 0012h  
W
xxh  
SAR7  
SAR6  
SAR5  
SAR4  
SAR3  
SAR2  
SAR1  
--  
Bit Name  
Description  
SAR7 ~ SAR1 7-bit address to be compared in slave mode.  
Weltrend Semiconductor, Inc.  
Page 27  
WT62P1  
Data Sheet Rev. 1.01  
Master I2C Flow Chart  
ꢀꢁꢂꢃꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢊꢋꢌꢍꢎꢏꢐ  
ꢀꢁꢖꢁꢗꢂ  
ꢆꢉꢘꢙꢚꢆꢉꢘꢙꢍꢊꢋꢌꢍꢎꢛꢚꢋꢌꢍꢎꢜꢐ  
ꢃꢄ  
ꢝꢝꢊꢑꢌꢍꢎꢜꢐꢔꢍꢕ  
ꢀꢁꢂ  
ꢃꢄ  
ꢂꢞ ꢁꢃ!"ꢂꢃꢕ  
ꢗꢖꢁ#$ꢃꢇꢈꢉꢑꢋꢊꢋꢌꢍꢎꢈꢐ  
ꢀꢁꢂ  
ꢗꢖꢁ#$ꢃ*+ꢅ.ꢙꢈꢊꢋꢌꢍꢎꢌꢐ  
ꢀꢁ%&ꢃꢀꢖ#'ꢁꢃ#&&$ꢁꢀꢀ  
ꢔ(ꢆꢇꢈꢉ)*+ꢊꢋꢌꢌꢐ  
ꢄꢅꢆꢇꢈꢅꢆꢉꢊꢋꢅꢌꢍ  
ꢀꢁꢂꢃꢆ,*ꢑꢊꢋꢌꢍꢎ-ꢐ  
ꢃꢄ  
ꢇꢈꢉꢑꢒꢓꢊꢑꢌꢍꢎꢍꢐꢔꢌꢕ  
ꢀꢁꢂ  
ꢃꢄ  
ꢑ+ꢅ.ꢙꢈꢊꢑꢌꢍꢎꢌꢐꢔꢍꢕ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢆ,*/0ꢊꢋꢌꢍꢎ1ꢐ  
2++2ꢔ(ꢆꢇꢈꢉ).ꢑꢊꢋꢌꢈꢐ  
ꢉꢀꢊꢋꢁꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁ%&ꢃ&#ꢂ#ꢃꢔ(ꢆꢇꢈꢉ)*+ꢊꢋꢌꢌꢐ  
2++2ꢔ(ꢆꢇꢈꢉ).ꢑꢊꢋꢌꢈꢐ  
ꢀꢁꢂꢃꢇꢈꢉꢑꢋꢊꢋꢌꢍꢎꢈꢐ  
ꢀꢁꢂ  
$ꢁ#&ꢃꢖ#ꢀꢂꢃ34ꢂꢁꢃꢕ  
ꢃꢄ  
ꢇꢈꢉꢑꢒꢓꢊꢑꢌꢍꢎꢍꢐꢔꢌꢕ  
ꢃꢄ  
ꢀꢁꢂꢃ*+ꢅ.ꢙꢈꢊꢋꢌꢍꢎꢌꢐ  
ꢀꢁꢂ  
2++2ꢔ(ꢆꢇꢈꢉ).ꢑꢊꢋꢌꢈꢐ  
2++2ꢔ(ꢆꢇꢈꢉ).ꢑꢊꢋꢌꢈꢐ  
ꢃꢄ  
ꢑ+ꢅ.ꢙꢈꢊꢑꢌꢍꢎꢌꢐꢔꢍꢕ  
ꢃꢄ  
ꢃꢄ  
ꢇꢈꢉꢑꢒꢓꢊꢑꢌꢍꢎꢍꢐꢔꢌꢕ  
ꢇꢈꢉꢑꢒꢓꢊꢑꢌꢍꢎꢍꢐꢔꢌꢕ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
#ꢖꢖꢃ34ꢂꢁꢀꢃꢀꢁ%&ꢁ&ꢃꢕ  
$ꢁ#&ꢃꢆꢇꢈꢉ)ꢑ+ꢊꢑꢌꢌꢐ  
$ꢁ#&ꢃꢆꢇꢈꢉ)ꢑ+ꢊꢑꢌꢌꢐ  
ꢀꢁꢂꢃꢆ,*/0ꢊꢋꢌꢍꢎ1ꢐ  
ꢃꢄ  
ꢀꢁꢂꢃꢆ,*/0ꢊꢋꢌꢍꢎ1ꢐ  
2++2ꢔ(ꢆꢇꢈꢉ).ꢑꢊꢋꢌꢈꢐ  
ꢀꢁ%&ꢃ&#ꢂ#ꢃꢔ(ꢆꢇꢈꢉ)*+ꢊꢋꢌꢌꢐ  
2++2ꢔ(ꢆꢇꢈꢉ).ꢑꢊꢋꢌꢈꢐ  
2++2ꢔ(ꢆꢇꢈꢉ).ꢑꢊꢋꢌꢈꢐ  
Weltrend Semiconductor, Inc.  
Page 28  
WT62P1  
Data Sheet Rev. 1.01  
Master I2C (restart mode) Flow Chart  
ꢀꢁꢂꢃꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢊꢋꢌꢍꢎꢏꢐ  
ꢀꢁꢖꢁꢗꢂ  
ꢆꢉꢘꢙꢚꢆꢉꢘꢙꢍꢊꢋꢌꢍꢎꢛꢚꢋꢌꢍꢎꢜꢐ  
ꢃꢄ  
ꢝꢝꢊꢑꢌꢍꢎꢜꢐꢔꢍꢕ  
ꢀꢁꢂ  
ꢃꢄ  
ꢂꢞ ꢁꢃ!"ꢂꢃꢕ  
ꢗꢖꢁ#$ꢃꢇꢈꢉꢑꢋꢊꢋꢌꢍꢎꢈꢐ  
ꢀꢁꢂ  
ꢗꢖꢁ#$ꢃ*+ꢅ.ꢙꢈꢊꢋꢌꢍꢎꢌꢐ  
ꢀꢁ%&ꢃꢀꢖ#'ꢁꢃ#&&$ꢁꢀꢀ  
ꢔ(ꢆꢇꢈꢉ)*+ꢊꢋꢌꢌꢐ  
ꢄꢅꢆꢇꢈꢅꢆꢉꢊꢋꢅꢌꢍ  
ꢀꢁꢂꢃꢆ,*ꢑꢊꢋꢌꢍꢎ-ꢐ  
ꢃꢄ  
ꢇꢈꢉꢑꢒꢓꢊꢑꢌꢍꢎꢍꢐꢔꢌꢕ  
ꢀꢁꢂ  
ꢃꢄ  
ꢑ+ꢅ.ꢙꢈꢊꢑꢌꢍꢎꢌꢐꢔꢍꢕ  
ꢀꢁꢂ  
ꢀꢁ%&ꢃ&#ꢂ#ꢃꢔ(ꢆꢇꢈꢉ)*+ꢊꢋꢌꢌꢐ  
/++/ꢔ(ꢆꢇꢈꢉ).ꢑꢊꢋꢌꢈꢐ  
ꢃꢄ  
ꢇꢈꢉꢑꢒꢓꢊꢑꢌꢍꢎꢍꢐꢔꢌꢕ  
ꢀꢁꢂ  
ꢃꢄ  
ꢑ+ꢅ.ꢙꢈꢊꢑꢌꢍꢎꢌꢐꢔꢍꢕ  
ꢀꢁꢂ  
ꢀꢁ%&ꢃꢀꢖ#'ꢁꢃ#&&$ꢁꢀꢀ  
ꢔ(ꢆꢇꢈꢉ)*+ꢊꢋꢌꢌꢐ  
ꢀꢁꢂꢃꢇꢈꢉꢑꢋꢊꢋꢌꢍꢎꢈꢐ  
ꢀꢁꢂꢃꢆ,*ꢑꢊꢋꢌꢍꢎ-ꢐ  
/++/ꢔ(ꢆꢇꢈꢉ).ꢑꢊꢋꢌꢈꢐ  
$ꢁ#&ꢃꢖ#ꢀꢂꢃ01ꢂꢁꢃꢕ  
ꢃꢄ  
ꢀꢁꢂꢃ*+ꢅ.ꢙꢈꢊꢋꢌꢍꢎꢌꢐ  
ꢃꢄ  
ꢇꢈꢉꢑꢒꢓꢊꢑꢌꢍꢎꢍꢐꢔꢌꢕ  
/++/ꢔ(ꢆꢇꢈꢉ).ꢑꢊꢋꢌꢈꢐ  
/++/ꢔ(ꢆꢇꢈꢉ).ꢑꢊꢋꢌꢈꢐ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢃꢄ  
ꢃꢄ  
ꢃꢄ  
ꢑ+ꢅ.ꢙꢈꢊꢑꢌꢍꢎꢌꢐꢔꢍꢕ  
ꢇꢈꢉꢑꢒꢓꢊꢑꢌꢍꢎꢍꢐꢔꢌꢕ  
ꢇꢈꢉꢑꢒꢓꢊꢑꢌꢍꢎꢍꢐꢔꢌꢕ  
ꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
$ꢁ#&ꢃꢆꢇꢈꢉ)ꢑ+ꢊꢑꢌꢌꢐ  
$ꢁ#&ꢃꢆꢇꢈꢉ)ꢑ+ꢊꢑꢌꢌꢐ  
ꢀꢁꢂꢃꢆ,*23ꢊꢋꢌꢍꢎ4ꢐ  
ꢀꢁꢂꢃꢆ,*23ꢊꢋꢌꢍꢎ4ꢐ  
/++/ꢔ(ꢆꢇꢈꢉ).ꢑꢊꢋꢌꢈꢐ  
/++/ꢔ(ꢆꢇꢈꢉ).ꢑꢊꢋꢌꢈꢐ  
ꢎꢏꢐ  
Weltrend Semiconductor, Inc.  
Page 29  
WT62P1  
Data Sheet Rev. 1.01  
Slave I2C Flow Chart  
ꢀꢁꢂꢃꢁ  
ꢀꢄꢕꢅꢖꢗꢊꢋꢌꢒꢓꢘꢙꢚꢔ  
ꢀꢁꢂꢃꢄꢅꢂꢆꢆꢇꢄꢀꢀꢅꢈꢉꢊꢋꢌꢍꢎꢏꢐꢑꢒꢓꢌꢔ  
ꢀꢄꢕꢅꢛ)ꢏ*ꢖꢑꢒꢓꢘꢙꢘꢔ  
ꢃꢄ  
ꢊꢋꢌꢍꢐ'(ꢑꢐꢓꢘꢙꢘꢔꢈꢓ  
ꢀꢁꢂ  
ꢃꢄ  
ꢛꢜꢋꢐꢛꢝꢑꢐꢓꢘꢙꢞꢔꢈꢓ  
ꢀꢁꢂ  
ꢃꢄ  
ꢛꢛꢝ#$ꢑꢐꢓꢘꢙ%ꢔꢈꢓ  
ꢃꢄ  
ꢛꢐꢒꢑꢐꢓꢘꢙꢌꢔꢈꢓ  
ꢀꢁꢂ  
ꢃꢄ  
ꢛꢐꢒꢑꢐꢓꢘꢙꢌꢔꢈꢓ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢂꢆꢆꢇꢄꢀꢀꢈꢉꢊꢋꢌꢍꢎꢏꢐꢑꢒꢓꢌꢔ  
ꢀꢁꢂ  
ꢀꢄꢕꢅꢋꢌꢍꢐꢒꢑꢒꢓꢘꢙꢌꢔ  
ꢇꢄꢂꢆꢅꢊꢋꢌꢍꢎꢐ"ꢑꢐꢓꢓꢔ  
ꢀꢄ!ꢆꢅꢆꢂꢕꢂꢅꢈꢉꢅꢊꢋꢌꢍꢎꢝ"ꢑꢒꢓꢓꢔ  
ꢃꢄ  
ꢐ"ꢗꢏ&ꢐꢓꢘꢙꢓꢔꢈꢘ  
ꢀꢁꢂꢃꢄꢅꢂꢆꢆꢇꢄꢀꢀꢈꢉꢊꢋꢌꢍꢎꢏꢐꢑꢒꢓꢌꢔ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢂꢆꢆꢇꢄꢀꢀꢈꢉꢊꢋꢌꢍꢎꢏꢐꢑꢒꢓꢌꢔ  
ꢀꢄ!ꢆꢅꢆꢂꢕꢂꢅꢈꢉꢅꢊꢋꢌꢍꢎꢝ"ꢑꢒꢓꢓꢔ  
ꢀꢁꢂꢃꢄꢅꢂꢆꢆꢇꢄꢀꢀꢈꢉꢊꢋꢌꢍꢎꢏꢐꢑꢒꢓꢌꢔ  
Weltrend Semiconductor, Inc.  
Page 30  
WT62P1  
Data Sheet Rev. 1.01  
Timer  
It is a 6-bit down counter with 2-bit prescaler. The time base is selected by PS1 and PS0 bits. Timer  
starts counting when writing data to TIMER register. When the counter reaches zero, the counter stops  
and sets interrupt flag (IF_TMR). If program wants to start the timer again, write data to TIMER register.  
PS1 PS0  
TIM0 TIM1 TIM2 TIM3 TIM4 TIM5  
0.256ms  
0.512ms  
1.024ms  
4.096ms  
Time base  
Selector  
IF_TMR  
6-Bit Timer  
IE_TMR  
Fig.11 Block diagram of Timer  
Timer Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TIMER 0018h  
W
00h  
PS1  
PS0  
TIM5  
TIM4  
TIM3  
TIM2  
TIM1  
TIM0  
Bit Name  
Bit Description  
PS1,PS0  
Prescaler of timer.  
“ 00” : time base = 0.256ms  
“ 01” : time base = 0.512ms  
“ 10” : time base = 1.024ms  
“ 11” : time base = 4.096ms  
TIM5 ~ TIM0 Timer period = time base x (6-bit data)  
Weltrend Semiconductor, Inc.  
Page 31  
WT62P1  
Data Sheet Rev. 1.01  
A/D converter  
The Analog-to-Digital Converter (ADC) has 6-bit resolution with four selectable input channels. When an  
input channel is selected, it will reset the ADC_DA register and start converting. After the conversion is  
done, the ADRDY bit is set and valid data is stored in AD5~AD0 bits. The total conversion time is from  
4.096ms to 8.192ms. If program want to make a new conversion, write ADC_CH register again and it will  
start another conversion.  
ADC Data Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC_DA 001Ah  
R
0xh ADRDY  
--  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
Bit Name  
Bit Description  
ADC data is ready to read when this bit is set.  
ADRDY  
AD5 ~ AD0 ADC data.  
ADC Channel Select Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC_CH 001Ah  
W
00h  
--  
--  
--  
--  
CH3  
CH2  
CH1  
CH0  
Bit Name  
Bit Description  
CH3  
CH2  
CH1  
CH0  
Select AD3 pin connect to ADC when this bit is set.  
Select AD2 pin connect to ADC when this bit is set.  
Select AD1 pin connect to ADC when this bit is set.  
Select AD0 pin connect to ADC when this bit is set.  
CH3  
CH2  
CH1  
CH0  
AD3  
AD2  
AD1  
AD0  
Comparator  
Resistor Array  
ADRDY  
6-bit Counter  
Fig.12 Block diagram of ADC  
Weltrend Semiconductor, Inc.  
Page 32  
WT62P1  
Data Sheet Rev. 1.01  
A/D Converter Flow Chart  
ꢀꢁꢂꢃꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢊꢋꢆꢌꢃꢃꢍꢎ  
ꢃꢃꢃꢃꢃꢃꢄꢅꢏꢇꢈꢉꢊꢋꢏꢌꢃꢃꢍꢎ  
ꢃꢃꢃꢃꢃꢃꢄꢅꢉꢇꢈꢉꢊꢋꢉꢌꢃꢃꢍꢎ  
ꢃꢃꢃꢃꢃꢃꢄꢅꢐꢇꢈꢉꢊꢋꢐꢌ  
ꢃꢄ  
ꢊꢑꢒꢑꢓꢇꢒꢉꢊꢋꢔꢌꢕꢉꢃꢖ  
ꢀꢁꢂ  
ꢎꢁꢗꢘꢃꢊꢑꢄꢙꢑꢊꢇꢒꢉꢊꢌ  
Weltrend Semiconductor, Inc.  
Page 33  
WT62P1  
Data Sheet Rev. 1.01  
Interrupt Control  
There are two interrupt vectors of CPU. The high priority interrupt INT0 (vector in $FFFAh and $FFFBh)  
is used for DDC interface interrupt. The low priority INT1 (vector in $FFFEh and $FFFFh) is ORed by six  
interrupt sources. Each interrupt can be enabled/disabled independently by programming INT_EN  
register and identified by INT_FLAG register.  
DDC interface interrupt  
Interrupt Condition  
Clear Interrupt  
Transmit data buffer is empty in DDC1 mode.  
Write data to DDC_RX register.  
A high to low transition on SCL1 pin in DDC1 Set CLRH2L bit in DDC_CON register and clear it .  
mode.  
Receive one byte in DDC2 mode.  
Transmit data buffer is empty in DDC2 mode.  
Received a STOP condition in DDC2 mode.  
Write address to DDC_AR0 register.  
Write address to DDC_AR0 register.  
Write address to DDC_AR0 register.  
I2C interface interrupt  
Interrupt Condition  
Clear Interrupt  
After transmit a byte.  
After receive a byte.  
Received a STOP condition.  
Write address to MI2C_AR register.  
Write address to MI2C_AR register.  
Write address to MI2C_AR register.  
USB interrupt  
Interrupt Condition  
Clear Interrupt  
Endpoint 0 IN token fail.  
Endpoint 0 IN token success.  
Reset transaction happened.  
Endpoint 1 IN token fail.  
Endpoint 1 IN token success.  
OUT token is finished.  
Set CLR_INT in USB_FPC register and clear.  
Set CLR_INT in USB_FPC register and clear.  
Set CLR_INT in USB_FPC register and clear.  
Set CLR_INT in USB_FPC register and clear.  
Set CLR_INT in USB_FPC register and clear.  
Set CLR_INT in USB_FPC register and clear.  
Set CLR_INT in USB_FPC register and clear.  
SETUP token is received.  
Sync Processor interrupt  
Interrupt Condition  
Clear Interrupt  
Latch a new H frequency to HFREQ_H and Read HFREQ_H Register.  
HFREQ_L register every 32.768ms or 16.384ms.  
Timer interrupt  
Interrupt Condition  
Clear Interrupt  
Timer expired.  
Write a value to TIMER register  
IRQ pin interrupt  
Interrupt Condition  
Clear Interrupt  
Low level or falling edge on /IRQ pin.  
Set CLRIRQ bit in IRQ_CON register and clear it .  
Vsync interrupt  
Interrupt Condition  
Clear Interrupt  
Leading edge of VOUT pin signal.  
Set CLRVSO bit in IRQ_CON register and clear it .  
Weltrend Semiconductor, Inc.  
Page 34  
WT62P1  
Data Sheet Rev. 1.01  
Interrupt Flag Register  
Name Addr R/W Initial  
Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INT_FLAG 001Bh  
R
00h IF_DDC IF_MI2C IF_USB IF_SYNC IF_TMR IF_IRQ IF_VSO  
--  
Bit Name  
Bit Description  
IF_DDC  
IF_MI2C  
IF_USB  
IF_SYNC  
IF_TMR  
IF_IRQ  
Indicate DDC interrupt when this bit is set.  
Indicate I2C interrupt when this bit is set.  
Indicate USB interrupt when this bit is set.  
Indicate sync processor interrupt when this bit is set.  
Indicate Timer interrupt when this bit is set.  
Indicate IRQ interrupt when this bit is set.  
Indicate VOUT interrupt when this bit is set.  
IF_VSO  
Interrupt Enable Register  
Name  
Addr R/W Initial  
Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INT_EN  
001Bh  
W
00h IE_DDC IE_MI2C IE_USB IE_SYNC IE_TMR IE_IRQ IE_VSO  
--  
Bit Name  
Bit Description  
IE_DDC  
IE_MI2C  
IE_USB  
IE_SYNC  
IE_TMR  
IE_IRQ  
Enable DDC interrupt when this bit is set.  
Enable I2C interrupt when this bit is set.  
Enable USB interrupt when this bit is set.  
Enable sync processor interrupt when this bit is set.  
Enable Timer interrupt when this bit is set.  
Enable IRQ interrupt when this bit is set.  
Enable VOUT interrupt when this bit is set.  
IE_VSO  
Interrupt Source Register  
Name Addr R/W Initial  
Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INT_SRC 001Ch  
R
--  
--  
--  
SYNC  
TIMER  
IRQ  
VSO  
--  
Bit Name  
Bit Description  
SYNC  
TIMER  
IRQ  
Indicate H frequency counter is ready to read when this bit is set..  
Indicate Timer expired when this bit is set.  
Indicate a low level or falling edge occurs on IRQ pin when this bit is set.  
Indicate a leading edge occurs on VOUT pin when this bit is set.  
VSO  
IRQ Control Register  
Name  
Addr R/W Initial  
Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IRQ_CON 001Ch W  
00h  
--  
--  
--  
--  
--  
CLRIRQ CLRVSO IRQ_EG  
Bit Name  
Bit Description  
CLRVSO  
CLRIRQ  
IRQ_EG  
Clear VOUT interrupt when this bit is set.  
Clear IRQ interrupt when this bit is set.  
Select IRQ pin interrupt type.  
“ 1” : Falling edge  
“ 0” : Low level  
Watchdog Timer  
Watchdog timer will generate a reset pulse if CPU does not write WDT register within 259.072ms or  
518.144ms. This function can be disable by setting DISWDT bit.  
Weltrend Semiconductor, Inc.  
Page 35  
WT62P1  
Data Sheet Rev. 1.01  
Watchdog Timer Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WDT  
001Dh  
W
00h  
--  
--  
--  
--  
--  
--  
DISWDT  
WDT  
Bit Name  
Description  
DISWDT “ 1” : Disable Watchdog Timer.  
“ 0” : Enable Watchdog Timer.  
WDT  
“ 1” : Watchdog Timer reset period is 518.144ms +8.096ms.  
“ 0” : Watchdog Timer reset period is 259.072ms +8.096ms.  
Function Configuration Register  
This register controls the special configuration of WT62P1.  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OPTION 0FFFh  
W
00h ENV33  
--  
--  
--  
DISRST STEST BANK3 BANK2  
Bit Name  
Bit Value = “1”  
Bit Value = “0”  
BANK2  
BANK3  
STEST  
DISRST  
ENV33  
Enable RAM 0200h~027Fh  
Enable RAM 0280h~02FFh  
For IC test only. Do not set this bit.  
Disable illegal address reset.  
Enable 3.3V regulator.  
Disable RAM 0200h~027Fh  
Disable RAM 0280h~02FFh  
For normal operation.  
Enable illegal address reset.  
Disable 3.3V regulator.  
Weltrend Semiconductor, Inc.  
Page 36  
WT62P1  
Data Sheet Rev. 1.01  
PWM  
There are 14 PWMs provided.  
PWM0 ~ PWM1 : +5V open-drain output.  
PWM2 ~ PWM3 : +10V open-drain output.  
PWM4 ~ PWM7 : +5V open-drain output, shared with I/O port D.  
PWM8 ~ PWM13 : +5V push-pull output, shared with I/O port A.  
The corresponding PWM register controls the PWM duty cycle. Duty cycle range is from 0/256 to  
255/256.  
LSB 3-bit of PWM register determines which frame will be extended two Tosc. ( Tosc = 1/12MHz)  
000 : no extended pulse.  
001 : extend two Tosc in frame 4.  
010 : extended two Tosc in frame 2 and 6.  
011 : extended two Tosc in frame 2, 4 and 6.  
100 : extended two Tosc in frame 1, 3, 5 and 7.  
101 : extended two Tosc in frame 1, 3, 4, 5 and 7.  
110 : extended two Tosc in frame 1, 2, 3, 5, 6 and 7.  
111 : extended two Tosc in frame 1, 2, 3, 4, 5, 6 and 7.  
MSB 5-bit of PWM register determines 0/32 to 31/32 duty cycle in each frame.  
Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7  
PWM=00001000  
2 Tosc  
2 Tosc  
PWM=00001001  
2 Tosc  
2 Tosc  
6 Tosc  
2 Tosc  
4 Tosc  
4 Tosc 2 Tosc  
2 Tosc  
2 Tosc  
32 Tosc  
4 Tosc  
PWM=00010010  
4 Tosc  
4 Tosc  
4 Tosc  
6 Tosc 4 Tosc  
256  
Tosc  
Fig. 13 PWM output waveform  
Weltrend Semiconductor, Inc.  
Page 37  
WT62P1  
Data Sheet Rev. 1.01  
PWM Registers  
Name  
PWM0  
Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0020h R/W 80h PWM07 PWM06 PWM05 PWM04 PWM03 PWM02 PWM01 PWM00  
0021h R/W 80h PWM17 PWM16 PWM15 PWM14 PWM13 PWM12 PWM11 PWM10  
0022h R/W 80h PWM27 PWM26 PWM25 PWM24 PWM23 PWM22 PWM21 PWM20  
0023h R/W 80h PWM37 PWM36 PWM35 PWM34 PWM33 PWM32 PWM31 PWM30  
0024h R/W 80h PWM47 PWM46 PWM45 PWM44 PWM43 PWM42 PWM41 PWM40  
0025h R/W 80h PWM57 PWM56 PWM55 PWM54 PWM53 PWM52 PWM51 PWM50  
0026h R/W 80h PWM67 PWM66 PWM65 PWM64 PWM63 PWM62 PWM61 PWM60  
0027h R/W 80h PWM77 PWM76 PWM75 PWM74 PWM73 PWM72 PWM71 PWM70  
0028h R/W 80h PWM87 PWM86 PWM85 PWM84 PWM83 PWM82 PWM81 PWM80  
0029h R/W 80h PWM97 PWM96 PWM95 PWM94 PWM93 PWM92 PWM91 PWM90  
002Ah R/W 80h PWM107 PWM106 PWM105 PWM104 PWM103 PWM102 PWM101 PWM100  
002Bh R/W 80h PWM117 PWM116 PWM115 PWM114 PWM113 PWM112 PWM111 PWM110  
002Ch R/W 80h PWM127 PWM126 PWM125 PWM124 PWM123 PWM122 PWM121 PWM120  
002Dh R/W 80h PWM137 PWM136 PWM135 PWM134 PWM133 PWM132 PWM131 PWM130  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
PWM8  
PWM9  
PWM10  
PWM11  
PWM12  
PWM13  
PWM_EN1 002Eh  
PWM_EN2 002Fh  
W
W
00h  
00h  
--  
--  
--  
--  
--  
--  
EPWM7 EPWM6 EPWM5 EPWM4  
EPWM13 EPWM12 EPWM11 EPWM10 EPWM9 EPWM8  
Bit Name  
Description  
PWMX7 ~ PWMX0 Select duty cycle of PWM output.  
00000000 : duty cycle = 0  
00000001 : duty cycle = 1/256  
00000010 : duty cycle = 2/256  
:
11111110 : duty cycle = 254/256  
11111111 : duty cycle = 255/256  
EPWMx  
Enable corresponding PWM output. ( x from 4 to 13) when it is set.  
Weltrend Semiconductor, Inc.  
Page 38  
WT62P1  
Data Sheet Rev. 1.01  
USB Interface  
The USB interface contains tranceiver, Serial Interface Engine (SIE), 3.3V voltage regulator, FIFOs for  
endpoint 0/1 and interface logic circuit.  
+3.3V  
VDD  
3.3V Regulator  
EP0 OUT FIFO  
1.5K  
Serial  
Interface  
Engine  
Tranceiver  
D-  
EP0 IN FIFO  
EP1 IN FIFO  
D+  
Interface Logic  
Interrupt  
Data Bus  
Fig.14 Block diagram of USB function  
3.3V Regulator  
The 3.3V regulator generates power for USB tranceiver. It can be enable/disable by the bit-7 of OPTION  
register ($0FFFH).  
Tranceiver  
It is capable of transmitting/receiving serial data at 1.5Mbit/s and complies with USB specification 1.0.  
Serial Interface Engine (SIE)  
The SIE supports :  
Packet protocol sequencing  
SOP,EOP,RESUME,RESET signal detection/generation  
Clock/data separation  
NRZI data encoding/decoding and bit-stuffing  
CRC generation and checking (Token and Data)  
Packet ID (PID) decoding/generation  
Serial-to-Parallel/Parallel-to-Serial conversion  
Interface Logic  
Main functions of the interface logic circuit are :  
USB address and endpoint decoding  
USB endpoint level flow control  
Maintain state of data toggle bits  
Interface to CPU  
Weltrend Semiconductor, Inc.  
Page 39  
WT62P1  
Data Sheet Rev. 1.01  
FIFO  
The FIFO is used to buffer USB data. There are three FIFOs : Endpoint 0 has IN FIFO (transmit) and  
OUT FIFO (receive), Endpoint 1 has IN FIFO only. Each FIFO has 8 bytes depth. The architecture of  
FIFO is show as blow.  
8
7
6
5
4
DATA IN  
DATA OUT  
3
2
1
0
Write Pointer  
Read Pointer  
Weltrend Semiconductor, Inc.  
Page 40  
WT62P1  
Data Sheet Rev. 1.01  
USB Address Register  
Name  
Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
USB_ADR 0030h  
W
00h EN_USB UAD6  
UAD5  
UAD4  
UAD3  
UAD2  
UAD1  
UAD0  
Bit Name  
Description  
EN_USB  
“ 1” : Enable USB function and connect D- pull up resistor.  
“ 0” : Disable USB function and disconnect D- pull up resistor.  
UAD6 ~ UAD0 USB device address.  
USB Interrupt Control Register  
Name  
Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
USB_ICR 0031h  
W
00h  
--  
ENSTAL1 ENOK1 ENRST ENSTAL0 ENOK0 ENOUT ENSUP  
Bit Name  
Description  
ENSTAL1 Enable Endpoit1 IN token stall interrupt.  
ENOK1  
ENRST  
Enable Endpoit1 IN token success interrupt.  
Enable RESET transaction interrupt.  
ENSTAL0 Enable Endpoit0 IN token stall interrupt .  
ENOK0  
ENOUT  
ENSUP  
Enable Endpoit0 IN token success interrupt.  
Enable OUT token success interrupt.  
Enable ETUP token finished interrupt.  
USB Interrupt Status Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
USB_ISR 0031h  
R
00h ACTIVE STALL1 EP1OK RESET STALL0 EP0OK  
OUT  
SETUP  
Bit Name  
Description  
ACTIVE  
“ 1” : Indicate the USB bus is active  
“ 0” : Indicate the USB bus is suspended.  
EP1STAL  
EP1OK  
RESET  
EP0STAL  
EP0OK  
OUT  
When this bit is set, it indicates Endpoit1 IN token stall or failed.  
When this bit is set, it indicates Endpoit1 IN token success (ACK).  
When this bit is set, it indicates RESET transaction happened  
When this bit is set, it indicates Endpoit0 IN token stall or failed.  
This bit is set when Endpoit0 IN token finished and ACK token has received.  
When this bit is set, it indicates OUT token is received  
SETUP  
When this bit is set, it indicates SETUP token is received  
USB Endpoint 0 FIFO  
Name  
Addr R/W Initial  
Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
USB_FIFO0 0032h R/W xxh  
F0D7  
F0D6  
F0D5  
F0D4  
F0D3  
F0D2  
F0D1  
F0D0  
Bit Name  
Description  
F0D7 ~ F0D0 Endpoint 0 FIFO.  
Weltrend Semiconductor, Inc.  
Page 41  
WT62P1  
Data Sheet Rev. 1.01  
USB FIFO Pointer Status Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
USB_FPS 0033h  
R
-- TOGOUT UNDRN TXOVF RXEMP UCNT3 UCNT2 UCNT1 UCNT0  
Bit Name  
Description  
TOGOUT  
“ 1” : Indicates the Data packet type of receive data is Data1.  
“ 0” : Indicates the Data packet type of receive data is Data0.  
FIFO Under-run. When this bit is set, it indicates reading EP0 OUT FIFO when it is  
empty..  
Transmit FIFO overflow. When this bit is set, it indicates writing data to EP0 IN FIFO  
when it is full.  
UNDRN  
TXOVF  
RXEMP  
Receive FIFO empty. When this bit is set, it indicates EP0 OUT FIFO is empty.  
UCNT3~UCNT0 Read pointer of EP0 OUT FIFO. The value indicates how many data byte stored in  
EP0 IN FIFO.  
“ 0000” : 0 byte  
“ 0001” : 1 byte  
:
“ 1000” : 8 byte  
USB FIFO Pointer Control Register  
Name  
Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
USB_FPC 0033h  
W
00h  
--  
--  
CLRACT CLRINT REP0RP REP0WP REP1RP REP1WP  
Bit Name  
Description  
CLRACT  
CLRINT  
When this bit is set, it clears the ACTIVE bit. (Bit7 of USB_ISR register)  
When this bit is set, it clears the interrupt source  
REP0RP  
REP0WP  
REP1RP  
REP1WP  
When this bit is set, it resets the read pointer of EP0 IN FIFO.  
When this bit is set, it resets the write pointer of EP0 IN FIFO.  
When this bit is set, it resets the read pointer of EP1 IN FIFO.  
When this bit is set, it resets the write pointer of EP1 IN FIFO.  
USB Endpoint 0 Control Register  
Name  
Addr R/W Initial  
Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
USB_CR0 0034h  
W
00h RESUME  
--  
--  
OUT0STL ENOUT0 IN0STL EP0VAL EP0TOG  
Bit Name  
Description  
RESUME  
OUT0STL  
ENOUT0  
IN0STL  
Send Resume signal to Host.  
Set EP0-OUT pipe stall when this bit is “ 1” .  
Enable EP0-OUT pipe when this bit is “ 1” .  
Set EP0-IN pipe stall when this bit is “ 1” .  
EP0VAL  
EP0TOG  
Set EP0-IN FIFO ready to send data when this bit is “ 1” .  
Set data packet type of EP0-IN pipe will send  
USB Endpoint 1 FIFO  
Name  
Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
USB_FIFO1 0035h  
W
xxh  
F1D7  
F1D6  
F1D5  
F1D4  
F1D3  
F1D2  
F1D1  
F1D0  
Bit Name  
Description  
F1D7 ~ F1D0 Endpoint 1 IN FIFO.  
Weltrend Semiconductor, Inc.  
Page 42  
WT62P1  
Data Sheet Rev. 1.01  
USB Endpoint1 Control Register  
Name Addr R/W Initial Bit 7  
Bit 6  
Bit 5  
Bit4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
USB_CR1 0036h  
W
x8h  
--  
--  
--  
--  
ENEP1 EP1STL EP1VAL EP1TOG  
Bit Name  
Descriptions  
ENEP1  
EP1STL  
EP1VAL  
EP1TOG  
Enable EP1-IN pipe when this bit is “ 1” .  
Set EP1-IN pipe stall when this bit is “ 1” .  
Set EP1-IN FIFO ready to send data when this bit is “ 1” .  
Set data packet type of EP1-IN pipe. When this bit is “ 1, it is DATA1.  
Weltrend Semiconductor, Inc.  
Page 43  
WT62P1  
Data Sheet Rev. 1.01  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings  
Parameter  
Min.  
Max.  
Units  
DC Supply Voltage (VDD)  
Input and output voltage with respect to Ground  
Storage temperature  
-0.3  
-0.3  
-25  
-10  
7.0  
VDD+0.3  
125  
V
V
oC  
oC  
Ambient temperature with power applied  
85  
*Note: Stresses above those listed may cause permanent damage to the devices  
D.C Characteristics (VDD=5.0V±5%, Ta=0-70°C)  
Symbol  
Parameter  
Supply Voltage  
3.3V regulator output voltage  
Input High Voltage  
Condition  
Min.  
Typ.  
Max.  
Units  
VDD  
V33  
VIH  
VIL  
4.5  
3.0  
0.7VDD  
-0.3  
2.2  
-0.3  
2.2  
-0.3  
4
5
3.3  
--  
--  
--  
--  
--  
--  
5.5  
3.6  
VDD+0.3  
0.2VDD  
VDD+0.3  
0.8  
VDD+0.3  
0.8  
VDD  
V
V
V
V
V
V
V
V
V
Input Low Voltage  
VIH,SYNC Sync Input High Voltage  
VIL,SYNC Sync Input Low Voltage  
VIH,RES  
VIL,RES  
VOH  
Reset Input High Voltage  
Reset Input Low Voltage  
Output High Voltage  
IOH = -6mA  
IOL = 6mA  
4.5  
0.26  
8
VOL  
Output Low Voltage  
0
0.4  
V
ohm  
RDH,USB Output impedance (High  
state)  
ROL,USB Output impedance (Low  
state)  
8
ohm  
IIL,SYNC  
Input Leakage Current  
HSYNC and VSYNC pins  
Pull High Resistance  
Operating Current  
0V <VIN < VDD  
-1  
--  
1
µA  
RPH  
IDD  
VRESET  
20  
12  
3.9  
50  
30  
4.2  
Kohm  
mA  
V
FOSC= 12MHz, No load  
Low VDD Reset Voltage  
3.6  
Weltrend Semiconductor, Inc.  
Page 44  
WT62P1  
Data Sheet Rev. 1.01  
A.C Characteristics (VDD=5.0V±5%, fosc=12MHz, Ta=0-70°C)  
/RESET and /IRQ Timing  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
tLOW,RES  
tLOW,IRQ  
/RESET pin low pulse  
/IRQ low pulse (level trigger)  
167  
167  
-
-
-
-
ns  
ns  
RESET  
IRQ  
ꢈꢉꢊꢃꢏꢑꢄ  
ꢀꢁꢂꢀꢃꢁꢏꢐ  
SYNC Processor Timing  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
tHIGH,SYNC  
tLOW,SYNC  
HSYNC and VSYNC high time  
HSYNC and VSYNC low time  
167  
167  
-
-
-
-
ns  
ns  
HSYNC  
VSYNC  
tHIGH,SYNC  
tLOW,SYNC  
DDC1 Timing  
Symbol  
tVAA,DDC1  
Parameter  
SDA1 output valid from VSYNC rising edge  
Min.  
125  
Typ.  
-
Max.  
500  
Units  
ns  
ꢋꢌꢌꢃꢍꢍꢇꢎ  
SDA1  
Bit 0 (LSB)  
Null Bit  
Bit 7 (MSB)  
VSYNC  
ꢀꢁꢂꢀꢃꢄꢅꢆꢇ  
ꢈꢉꢊꢃꢄꢅꢆꢇ  
Weltrend Semiconductor, Inc.  
Page 45  
WT62P1  
Data Sheet Rev. 1.01  
DDC2B Timing  
Symbol Parameter  
Min.  
Typ.  
Max.  
Units  
fSCL  
tBF  
SCL1 input clock frequency  
Bus free time  
Hold time for START condition  
Set-up time for START condition  
SCL1 clock high time  
0
2
1
1
1
1
0
167  
167  
334  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
100  
-
-
-
-
-
-
-
-
-
1
300  
-
kHz  
us  
us  
us  
us  
us  
ns  
ns  
ns  
ns  
us  
ns  
us  
tHD,START  
tSU,START  
tHIGH,SCL  
tLOW,SCL  
tHD,DATA  
SCL1 clock low time  
Hold time for DATA input  
Hold time for DATA output  
Set-up time for DATA input  
Set-up time for DATA output  
SCL1 and SDA1 rise time  
SCL1 and SDA1 fall time  
Set-up time for STOP condition  
tSU,DATA  
tRISE,DDC  
tFALL.DDC  
tSU,STOP  
-
2
ꢒꢓ  
SDA1  
ꢏꢁꢄꢑ  
ꢀꢍꢃꢄꢕꢌꢏꢕ  
ꢓꢌꢈꢈ  
SCL1  
ꢀꢁꢂꢀꢃꢄꢇꢈ  
ꢄꢔꢃꢄꢕꢉꢖ  
ꢈꢉꢊꢃꢄꢇꢈ  
ꢀꢍꢃꢍꢌꢕꢌ  
ꢄꢔꢃꢄꢕꢌꢏꢕ  
ꢄꢔꢃꢍꢌꢕꢌ  
Weltrend Semiconductor, Inc.  
Page 46  
WT62P1  
Data Sheet Rev. 1.01  
USB Timing  
Symbol  
Parameter  
D+ and D- Rise Time  
D+ and D- Fall Time  
D+ and D- Rise/Fall Time Matching  
Crossover point  
Min.  
Typ.  
Max.  
Units  
tRISE,USB  
tFALL,USB  
tRFM  
75  
75  
70  
1.3  
300  
300  
130  
2.0  
ns  
ns  
%
V
VCROSS  
D+ , D-  
tRISE,USB  
tRISE,USB  
Weltrend Semiconductor, Inc.  
Page 47  
WT62P1  
Data Sheet Rev. 1.01  
TYPICAL APPLICATION CIRCUIT  
Crystal Oscillator  
Reset Pin and 3.3V Regulator  
PWM Output  
Weltrend Semiconductor, Inc.  
Page 48  
WT62P1  
Data Sheet Rev. 1.01  
Hsync, Vsync and DDC Interface Protection  
Weltrend Semiconductor, Inc.  
Page 49  
厂商 型号 描述 页数 下载

WELTREND

WT6014 数字监控器[ Digital Monitor Controller ] 19 页

ETC

WT6016 数字监控器[ Digital Monitor Controller ] 24 页

ETC

WT6018 数字监控器[ Digital Monitor Controller ] 23 页

ETC

WT60P1 数字监控器[ Digital Monitor Controller ] 24 页

ETC

WT6116 微控制器的数字控制显示器[ microcontroller for digital controlled monitor ] 39 页

ETC

WT6124 微控制器的数字控制显示器[ microcontroller for digital controlled monitor ] 39 页

ETC

WT6132 微控制器的数字控制显示器[ microcontroller for digital controlled monitor ] 39 页

ETC

WT6148 数字监控控制器( ROM类型)[ Digital Monitor Controller (ROM Type) ] 5 页

ETC

WT6148-K42 数字监控控制器( ROM类型)[ Digital Monitor Controller (ROM Type) ] 5 页

ETC

WT6148-L44 数字监控控制器( ROM类型)[ Digital Monitor Controller (ROM Type) ] 5 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.261418s