找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

LZ4-00B208-0000

型号:

LZ4-00B208-0000

品牌:

ETC[ ETC ]

页数:

16 页

PDF大小:

1439 K

Blue LED Emitter  
LZ4-00B208  
Key Features  
.
.
.
.
.
.
.
.
.
.
.
.
High flux output Blue 457nm LED  
3.9W or 14.5 umol/ at 9W power dissipation  
Ultra-small foot print 7.0mm x 7.0mm  
Surface mount ceramic package with integrated glass lens  
Low Thermal Resistance (2.8°C/W)  
Individually addressable die  
Very high Luminous Flux density  
JEDEC Level 1 for Moisture Sensitivity Level  
Autoclave complaint (JEDEC JESD22-A102-C)  
Lead (Pb) free and RoHS compliant  
Reflow solderable (up to 6 cycles)  
Emitter available on Standard MCPCB (optional)  
Typical Applications  
.
.
.
.
.
.
.
.
Architectural lighting  
Automotive and Marine lighting  
Stage and Studio lighting  
Horticulture  
Emergency lighting  
Buoys  
Beacons  
Airfield lighting and signs  
Description  
The LZ4-00B208 Blue LED emitter provides 9W power in an extremely small package. With a 7.0mm x 7.0mm  
ultra-small footprint, this package provides exceptional luminous flux density. LED Engin’s LZ4-00B208 LED offers  
ultimate design flexibility with individually addressable die. The patent-pending design has unparalleled thermal  
and optical performance and excellent UV resistance. The high quality materials used in the package are chosen to  
optimize light output and minimize stresses which results in monumental reliability and lumen maintenance. The  
robust product design thrives in outdoor applications with high ambient temperatures and high humidity.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Part number options  
Base part number  
Part number  
Description  
LZ4-00B208-xxxx  
LZ4-40B208-xxxx  
LZ4 emitter  
LZ4 emitter on Standard Star 1 channel MCPCB  
Bin kit option codes  
B2, Blue (460nm)  
Min  
Kit number  
flux  
Color Bin Range  
Description  
suffix  
Bin  
full distribution flux; full distribution  
wavelength  
0000  
L
B3 B4  
Notes:  
1.  
Default bin kit option is -0000  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
2
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Luminous Flux Bins  
Table 1:  
Minimum  
Maximum  
Luminous Flux V)  
@ IF = 700mA[1]  
(lm)  
Luminous Flux V)  
@ IF = 700mA[1]  
(lm)  
Bin Code  
L
93  
117  
146  
182  
228  
M
117  
146  
182  
N
P
Notes for Table 1:  
1.  
Luminous flux performance is measured at 10ms pulse, TC = 25°C. LED Engin maintains a tolerance of ± 10% on flux measurements.  
Dominant Wavelength Bins  
Table 2:  
Minimum  
Maximum  
Dominant Wavelength (λD)  
@ IF = 700mA[1,2]  
(nm)  
Dominant Wavelength (λD)  
@ IF = 700mA[1,2]  
(nm)  
Bin Code  
B3  
B4  
450  
455  
455  
460  
Notes for Table 2:  
1.  
2.  
Dominant wavelength is measured at 10ms pulse, TC = 25oC. LED Engin maintains a tolerance of ± 1.0nm on peak wavelength measurements.  
Dominant wavelength is derived from the CIE 1931 Chromaticity Diagram and represents the perceived hue.  
Forward Voltage Bins  
Table 3:  
Minimum  
Maximum  
Forward Voltage (VF)  
@ IF = 700mA[1,2]  
(V)  
Forward Voltage (VF)  
@ IF = 700mA[1,2]  
(V)  
Bin Code  
0
11.2  
15.2  
Notes for Table 3:  
1.  
2.  
Forward Voltage is binned with all four LED dice connected in series.  
Forward voltage is measured at 10ms pulse, TC = 25oC. LED Engin maintains a tolerance of ± 0.16V for forward voltage measurements for the four LEDs.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
3
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Absolute Maximum Ratings  
Table 4:  
Parameter  
Symbol  
Value  
Unit  
mA  
mA  
V
°C  
°C  
DC Forward Current [1]  
Peak Pulsed Forward Current[2]  
Reverse Voltage  
IF  
IFP  
VR  
Tstg  
TJ  
1000  
1500  
See Note 3  
-40 ~ +150  
150  
Storage Temperature  
Junction Temperature  
Soldering Temperature[4]  
Allowable Reflow Cycles  
Tsol  
260  
6
°C  
121°C at 2 ATM,  
100% RH for 168 hours  
Autoclave Conditions[5]  
Notes for Table 4:  
1.  
Maximum DC forward current (per die) is determined by the overall thermal resistance and ambient temperature. Follow the curves in Figure 10 for current  
de-rating.  
2:  
3.  
4.  
5.  
6.  
Pulse forward current conditions: Pulse Width ≤ 10msec and Duty Cycle ≤ 10%.  
LEDs are not designed to be reverse biased.  
Solder conditions per JEDEC 020c. See Reflow Soldering Profile Figure 3.  
Autoclave Conditions per JEDEC JESD22-A102-C.  
LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZ4-00B208 in an electrostatic protected area (EPA).  
An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1.  
Optical Characteristics @ TC = 25°C  
Table 5:  
Parameter  
Symbol  
Typical  
Unit  
Luminous Flux (@ IF = 700mA/ 1000mA)[1]  
Radiant Flux (@ IF = 700mA/ 1000mA)[1]  
PPF[2] 400-700nm (@ IF = 700mA/ 1000mA)  
Wall Plug Efficiency (@ IF = 350mA)  
Dominant Wavelength[3]  
ΦV  
Φ
145/195  
3.9/ 5.3  
14.5/ 19.5  
52  
lm  
W
umol/s  
%
Ƞ
λD  
457  
nm  
Peak Wavelength  
λP  
453  
100  
120  
nm  
Degrees  
Degrees  
Viewing Angle[4]  
2Θ  
½
Total Included Angle[5]  
Θ0.9  
Notes for Table 5:  
1.  
2.  
3.  
4.  
5.  
Luminous flux typical value is for all four LED dice operating concurrently at rated current.  
PPF is Photosynthetic Photon Flux  
Observe IEC 60825-1 class 2 rating for eye safety. Do not stare into the beam.  
Viewing Angle is the off axis angle from emitter centerline where the luminous intensity is ½ of the peak value.  
Total Included Angle is the total angle that includes 90% of the total luminous flux.  
Electrical Characteristics @ TC = 25°C  
Table 6:  
Parameter  
Symbol  
Typical  
Unit  
Forward Voltage (@ IF = 700mA) [1]  
Forward Voltage (@ IF = 1000mA) [1]  
VF  
VF  
12.8  
13.2  
V
V
Temperature Coefficient  
of Forward Voltage [1]  
ΔVF/ΔTJ  
J-C  
-9.6  
2.8  
mV/°C  
°C/W  
Thermal Resistance  
(Junction to Case)  
Notes for Table 6:  
1.  
Forward Voltage typical value is for all four LED dice connected in series.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
4
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
IPC/JEDEC Moisture Sensitivity Level  
Table 7 - IPC/JEDEC J-STD-20 MSL Classification:  
Soak Requirements  
Floor Life  
Conditions  
Standard  
Conditions  
Accelerated  
Level  
1
Time  
Time (hrs)  
Time (hrs)  
Conditions  
≤ 30°C/  
168  
+5/-0  
85°C/  
85% RH  
Unlimited  
n/a  
n/a  
85% RH  
Notes for Table 7:  
1.  
The standard soak time is the sum of the default value of 24 hours for the semiconductor manufacturer’s exposure time (MET) between bake and bag  
and the floor life of maximum time allowed out of the bag at the end user of distributor’s facility.  
Average Lumen Maintenance Projections  
Lumen maintenance generally describes the ability of a lamp to retain its output over time. The useful lifetime for  
solid state lighting devices (Power LEDs) is also defined as Lumen Maintenance, with the percentage of the original  
light output remaining at a defined time period.  
Based on long-term WHTOL testing, LED Engin projects that the LZ Series will deliver, on average, 70% Lumen  
Maintenance at 65,000 hours of operation at a forward current of 700 mA per die. This projection is based on  
constant current operation with junction temperature maintained at or below 125°C.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
5
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Mechanical Dimensions (mm)  
Pin Out  
Pad  
1
Die  
Function  
A
Anode  
Cathode  
Anode  
2
A
3
B
4
B
Cathode  
Anode  
5
C
6
C
Cathode  
Anode  
7
D
8
9[2]  
D
Cathode  
Thermal  
n/a  
2
3
1
8
4
Figure 1: Package outline drawing.  
Notes for Figure 1:  
7
5
6
1.  
2.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
Thermal contact, Pad 9, is electrically neutral.  
Recommended Solder Pad Layout (mm)  
Non-pedestal MCPCB Design  
Pedestal MCPCB Design  
Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad for non-pedestal and pedestal design  
Note for Figure 2a:  
1.  
2.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
Pedestal MCPCB allows the emitter thermal slug to be soldered directly to the metal core of the MCPCB. Such MCPCB eliminate the high thermal  
resistance dielectric layer that standard MCPCB technologies use in between the emitter thermal slug and the metal core of the MCPCB, thus lowering  
the overall system thermal resistance.  
3.  
LED Engin recommends x-ray sample monitoring for solder voids underneath the emitter thermal slug. The total area covered by solder voids should be  
less than 20% of the total emitter thermal slug area. Excessive solder voids will increase the emitter to MCPCB thermal resistance and may lead to  
higher failure rates due to thermal over stress.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
6
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Recommended Solder Mask Layout (mm)  
Non-pedestal MCPCB Design  
Pedestal MCPCB Design  
Figure 2b: Recommended solder mask opening for anode, cathode, and thermal pad for non-pedestal and pedestal design  
Note for Figure 2b:  
1. Unless otherwise noted, the tolerance = ± 0.20 mm.  
Recommended 8 mil Stencil Apertures Layout (mm)  
Non-pedestal MCPCB Design  
Pedestal MCPCB Design  
Figure 2c: Recommended 8mil stencil apertures for anode, cathode, and thermal pad for non-pedestal and pedestal design  
Note for Figure 2c:  
1. Unless otherwise noted, the tolerance = ± 0.20 mm.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
7
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Reflow Soldering Profile  
Figure 3: Reflow soldering profile for lead free soldering.  
Typical Radiation Pattern  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
-90 -80 -70 -60 -50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Angular Displacement (Degrees)  
Figure 4: Typical representative spatial radiation pattern @ TC = 25°C.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
8
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Typical Relative Spectral Power Distribution  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
400  
450  
500  
550  
600  
650  
700  
Wavelength (nm)  
Figure 5: Typical relative spectral power vs. wavelength @ TC = 25°C.  
Typical Forward Current Characteristics  
1,200  
1,000  
800  
600  
400  
200  
0
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
VF - Forward Voltage (V)  
Figure 6: Typical forward current vs. forward voltage @ TC = 25°C.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
9
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Typical Relative Light Output over Current  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
200  
400  
600  
800  
1000  
1200  
IF - Forward Current (mA)  
Figure 7: Typical relative light output vs. forward current @ TC = 25°C.  
Typical Relative Light Output over Temperature  
140%  
120%  
100%  
80%  
60%  
40%  
20%  
0%  
0
20  
40  
60  
80  
100  
120  
TC - Case Temperature (oC)  
Figure 8: Typical relative light output vs. case temperature.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
10  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Typical Dominant Wavelength Shift over Current  
3.0  
2.0  
1.0  
0.0  
-1.0  
-2.0  
-3.0  
0
200  
400  
600  
800  
1000  
1200  
IF - Forward Current (mA)  
Figure 9: Typical dominant wavelength shift vs. forward current @ TC = 25°C.  
Typical Dominant Wavelength Shift over Temperature  
8.0  
6.0  
4.0  
2.0  
0.0  
-2.0  
-4.0  
-6.0  
-8.0  
0
20  
40  
60  
80  
100  
120  
TC - Case Temperature (°C)  
Figure 10: Typical dominant wavelength shift vs. case temperature.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
11  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Current De-rating  
1200  
1000  
800  
700  
(Rated)  
600  
RΘJA = 4°C/W  
RΘJA = 5°C/W  
RΘJA = 6°C/W  
400  
200  
0
0
25  
50  
75  
100  
125  
150  
TA - Ambient Temperature (°C)  
Figure 11: Maximum forward current vs. ambient temperature.  
Notes for Figure 11:  
1.  
2.  
3.  
Maximum current assumes that all four LED dice are operating concurrently at the same current.  
J-C [Junction to Case Thermal Resistance] for the LZ4-00B208 is typically 2.8°C/W.  
J-A [Junction to Ambient Thermal Resistance] = RΘJ-C + RΘC-A [Case to Ambient Thermal Resistance].  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
12  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Emitter Tape and Reel Specifications (mm)  
Figure 12: Emitter carrier tape specifications (mm).  
Figure 13: Emitter Reel specifications (mm).  
Notes for Figure 13:  
1.  
2.  
3.  
Small reel quantity: up to 250 emitters  
Large reel quantity: 250-1200 emitters  
Single flux bin and single wavelength per reel.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
13  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
LZ4 MCPCB Family  
Emitter + MCPCB  
Thermal Resistance  
(oC/W)  
Diameter  
Typical Vf Typical If  
Part number Type of MCPCB  
(mm)  
(V)  
(mA)  
LZ4-4xxxxx 1-channel  
19.9  
2.8 + 1.1 = 3.9  
14.0  
700  
Mechanical Mounting of MCPCB  
.
MCPCB bending should be avoided as it will cause mechanical stress on the emitter, which could lead to  
substrate cracking and subsequently LED dies cracking.  
.
To avoid MCPCB bending:  
o
o
Special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws.  
Care must be taken when securing the board to the heat sink. This can be done by tightening three M3  
screws (or #4-40) in steps and not all the way through at once. Using fewer than three screws will  
increase the likelihood of board bending.  
o
o
It is recommended to always use plastics washers in combinations with the three screws.  
If non-taped holes are used with self-tapping screws, it is advised to back out the screws slightly after  
tightening (with controlled torque) and then re-tighten the screws again.  
Thermal interface material  
.
.
.
To properly transfer heat from LED emitter to heat sink, a thermally conductive material is required when  
mounting the MCPCB on to the heat sink.  
There are several varieties of such material: thermal paste, thermal pads, phase change materials and thermal  
epoxies. An example of such material is Electrolube EHTC.  
It is critical to verify the material’s thermal resistance to be sufficient for the selected emitter and its operating  
conditions.  
Wire soldering  
.
To ease soldering wire to MCPCB process, it is advised to preheat the MCPCB on a hot plate of 125-150oC.  
Subsequently, apply the solder and additional heat from the solder iron will initiate a good solder reflow. It is  
recommended to use a solder iron of more than 60W.  
.
It is advised to use lead-free, no-clean solder. For example: SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn:  
24-7068-7601)  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
14  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
LZ4-4xxxxx  
1 channel, Standard Star MCPCB (1x4) Dimensions (mm)  
Notes:  
Unless otherwise noted, the tolerance = ± 0.2 mm.  
Slots in MCPCB are for M3 or #4-40 mounting screws.  
LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.  
LED Engin recommends thermal interface material when attaching the MCPCB to a heatsink  
The thermal resistance of the MCPCB is: RΘC-B 1.1°C/W  
Components used  
MCPCB:  
ESD chips:  
HT04503  
BZX585-C30  
(Bergquist)  
(NXP, for 4 LED dies in series)  
Pad layout  
MCPCB  
Pad  
Ch.  
String/die Function  
1, 2, 3  
4, 5  
Cathode -  
Anode +  
1
1/ABCD  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
15  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
About LED Engin  
LED Engin, an OSRAM business based in California’s Silicon Valley, develops, manufactures, and sells advanced LED  
emitters, optics and light engines to create uncompromised lighting experiences for a wide range of  
entertainment, architectural, general lighting and specialty applications. LuxiGenTM multi-die emitter and  
secondary lens combinations reliably deliver industry-leading flux density, upwards of 5000 quality lumens to a  
target, in a wide spectrum of colors including whites, tunable whites, multi-color and UV LEDs in a unique patented  
compact ceramic package. Our LuxiTuneTM series of tunable white lighting modules leverage our LuxiGen emitters  
and lenses to deliver quality, control, freedom and high density tunable white light solutions for a broad range of  
new recessed and downlighting applications. The small size, yet remarkably powerful beam output and superior in-  
source color mixing, allows for a previously unobtainable freedom of design wherever high-flux density, directional  
light is required. LED Engin is committed to providing products that conserve natural resources and reduce  
greenhouse emissions; and reserves the right to make changes to improve performance without notice.  
For more information, please contact LEDE-Sales@osram.com or +1 408 922-7200.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00B208 (1.5 - 11/19/2018)  
16  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
厂商 型号 描述 页数 下载

ETC

LZ4-00R308-0000 [ LED EMITTER RED 740NM SMD ] 15 页

ETC

LZ4-00UA00-0000 [ EMITTER UV 395NM 1A ] 15 页

ETC

LZ4-00UA00-00U4 [ EMITTER UV 390NM 1A ] 15 页

ETC

LZ4-00UA00-00U5 [ EMITTER UV 395NM 1A ] 15 页

ETC

LZ4-00UA00-00U7 [ EMITTER UV 405NM 1A ] 15 页

ETC

LZ4-00UA00-00U8 [ EMITTER UV 410NM 1A ] 15 页

ETC

LZ4-00WW08-0030 [ LED WARM WHITE 3000K 80CRI 8SMD ] 18 页

ETC

LZ4-00WW08-0035 [ LED WARM WHITE 3500K 80CRI 8SMD ] 18 页

ETC

LZ4-00WW08-0230 [ LED WARM WHITE 3000K 80CRI 8SMD ] 18 页

ETC

LZ4-00WW08-0427 [ LED WARM WHITE 2700K 80CRI 8SMD ] 18 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.189458s