找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

LZ4-00R308-0000

型号:

LZ4-00R308-0000

品牌:

ETC[ ETC ]

页数:

15 页

PDF大小:

1477 K

Far Red LED Emitter  
LZ4-00R308  
Key Features  
.
.
.
.
.
.
.
.
.
.
.
.
High flux output Far Red 740nm LED  
12.8 umol/s output at 5.7W power dissipation  
Ultra-small foot print 7.0mm x 7.0mm  
Surface mount ceramic package with integrated glass lens  
Low Thermal Resistance (2.8°C/W)  
Individually addressable die  
Very high Radiant Flux density  
Autoclave compliant (JEDEC JESD22-A102-C)  
JEDEC Level 1 for Moisture Sensitivity Level  
Lead (Pb) free and RoHS compliant  
Reflow solderable (up to 6 cycles)  
Emitter available on Standard or Serially Connected MCPCB (optional)  
Typical Applications  
.
.
.
Horticulture  
Photo Therapy  
Machine Vision  
Description  
The LZ4-00R308 Far Red LED emitter generates 2.1W radiant flux or 12.8umol/s nominal output at 5.7W power  
dissipation in an extremely small package. With a 7.0mm x 7.0mm ultra-small footprint, this package provides  
exceptional radiant flux density. The patent-pending design has unparalleled thermal and optical performance.  
The high quality materials used in the package are chosen to optimize light output and minimize stresses which  
results in monumental reliability and lumen maintenance. The robust product design thrives in outdoor  
applications with high ambient temperatures and high humidity.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Part number options  
Base part number  
Part number  
Description  
LZ4-00R308-xxxx  
LZ4-40R308-xxxx  
LZ4 emitter  
LZ4 emitter on Standard Star 1 channel MCPCB  
Bin kit option codes  
R3, Far-Red (740nm)  
Min  
Kit number  
flux  
Color Bin Range  
Description  
suffix  
Bin  
full distribution flux; full distribution  
wavelength  
0000  
P
F07 F07  
Notes:  
1.  
Default bin kit option is -0000  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
2
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Radiant Flux Bins  
Table 1:  
Minimum  
Radiant Flux (Φ)  
@ IF = 700mA[1]  
(W)  
Maximum  
Radiant Flux (Φ)  
@ IF = 700mA[1]  
(W)  
Bin Code  
P
Q
1.60  
2.00  
2.00  
2.40  
Notes for Table 1:  
1.  
Radiant flux performance is measured at 10ms pulse, TC = 25°C. LED Engin maintains a tolerance of ± 10% on flux measurements.  
Peak Wavelength Bin  
Table 2:  
Minimum  
Maximum  
Peak Wavelength (λP)  
@ IF = 700mA[1]  
(nm)  
Peak Wavelength (λP)  
@ IF = 700mA[1]  
(nm)  
Bin Code  
F07  
723  
745  
Notes for Table 2:  
1.  
Peak wavelength is measured at 10ms pulse, TC = 25oC. LED Engin maintains a tolerance of ± 1.0nm on peak wavelength measurements.  
Forward Voltage Bins  
Table 3:  
Minimum  
Forward Voltage (VF)  
@ IF = 700mA[1,2]  
(V)  
Maximum  
Forward Voltage (VF)  
@ IF = 700mA[1,2]  
(V)  
Bin Code  
0
8.0  
11.84  
Notes for Table 3:  
1.  
2.  
Forward Voltage is binned with all four LED dice connected in series.  
Forward voltage is measured at 10ms pulse, TC = 25oC. LED Engin maintains a tolerance of ± 0.16V for forward voltage measurements for the four LEDs.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
3
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Absolute Maximum Ratings  
Table 4:  
Parameter  
Symbol  
Value  
Unit  
DC Forward Current [1]  
Peak Pulsed Forward Current[2]  
Reverse Voltage  
IF  
IFP  
VR  
Tstg  
TJ  
1000  
1500  
See Note 3  
-40 ~ +125  
125  
mA  
mA  
V
°C  
°C  
Storage Temperature  
Junction Temperature  
Soldering Temperature[4]  
Allowable Reflow Cycles  
Tsol  
260  
6
°C  
121°C at 2 ATM,  
100% RH for 168 hours  
Autoclave Conditions[5]  
Notes for Table 4:  
1.  
Maximum DC forward current (per die) is determined by the overall thermal resistance and ambient temperature.  
Follow the curves in Figure 10 for current derating.  
2:  
3.  
4.  
5.  
6.  
Pulse forward current conditions: Pulse Width ≤ 10msec and Duty Cycle ≤ 10%.  
LEDs are not designed to be reverse biased.  
Solder conditions per JEDEC 020D. See Reflow Soldering Profile Figure 3.  
Autoclave Conditions per JEDEC JESD22-A102-C.  
LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZ4-00R308 in an electrostatic protected area (EPA).  
An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1.  
Optical Characteristics @ TC = 25°C  
Table 5:  
Parameter  
Symbol  
Typical  
Unit  
Radiant Flux (@ IF = 700mA/ 1000mA)[1]  
PF[2] 280-800nm (@ IF = 700mA/ 1000mA)  
Wall Plug Efficiency (@IF = 350mA/ 700mA)  
Peak Wavelength  
Φ
2.1/ 2.7  
12.8/ 16.5  
39/ 31  
740  
W
µmol/s  
%
Ƞ
λP  
nm  
Viewing Angle[3]  
1/2  
Θ0.9  
100  
Degrees  
Degrees  
Total Included Angle[4]  
120  
Notes for Table 5:  
1.  
2.  
3.  
4.  
Radiant flux typical value is for all four LED dice operating concurrently at rated current.  
PF is Photon Flux  
Viewing Angle is the off axis angle from emitter centerline where the radiant power is ½ of the peak value.  
Total Included Angle is the total angle that includes 90% of the total radiant flux.  
Electrical Characteristics @ TC = 25°C  
Table 6:  
Parameter  
Symbol  
Typical  
Unit  
Forward Voltage (@ IF = 700mA)[1]  
Forward Voltage (@ IF = 1000mA)[1]  
VF  
VF  
8.2  
8.8  
V
V
Temperature Coefficient  
of Forward Voltage  
ΔVF/ΔTJ  
J-C  
-8.0  
2.8  
mV/°C  
°C/W  
Thermal Resistance  
(Junction to Case)  
Notes for Table 6:  
1.  
Forward Voltage typical value is for all four LED dice connected in series.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
4
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
IPC/JEDEC Moisture Sensitivity Level  
Table 7 - IPC/JEDEC J-STD-20 MSL Classification:  
Soak Requirements  
Floor Life  
Conditions  
Standard  
Conditions  
Accelerated  
Level  
1
Time  
Time (hrs)  
Time (hrs)  
Conditions  
≤ 30°C/  
85% RH  
168  
+5/-0  
85°C/  
85% RH  
1 Year  
n/a  
n/a  
Notes for Table 7:  
1.  
The standard soak time is the sum of the default value of 24 hours for the semiconductor manufacturer’s exposure time (MET) between bake and bag  
and the floor life of maximum time allowed out of the bag at the end user of distributor’s facility.  
Average Radiant Flux Maintenance Projections  
Based on long-term WHTOL testing, LED Engin projects that the LZ Series will deliver, on average, 70% Radiant Flux  
Maintenance at 65,000 hours of operation at a forward current of 700 mA. This projection is based on constant  
current operation with junction temperature maintained at or below 110°C.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
5
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Mechanical Dimensions (mm)  
Pin Out  
Pad  
1
Die  
Function  
A
Anode  
Cathode  
Anode  
2
A
3
B
4
B
Cathode  
Anode  
5
C
6
C
Cathode  
Anode  
7
D
8
9[2]  
D
Cathode  
Thermal  
n/a  
2
3
1
8
4
Figure 1: Package outline drawing.  
Notes for Figure 1:  
7
5
6
1.  
2.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
Thermal contact, Pad 9, is electrically neutral.  
Recommended Solder Pad Layout (mm)  
Non-pedestal MCPCB Design  
Pedestal MCPCB Design  
Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad for non-pedestal and pedestal design  
Note for Figure 2a:  
1.  
2.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
Pedestal MCPCB allows the emitter thermal slug to be soldered directly to the metal core of the MCPCB. Such MCPCB eliminate the high thermal  
resistance dielectric layer that standard MCPCB technologies use in between the emitter thermal slug and the metal core of the MCPCB, thus lowering  
the overall system thermal resistance.  
3.  
LED Engin recommends x-ray sample monitoring for solder voids underneath the emitter thermal slug. The total area covered by solder voids should be  
less than 20% of the total emitter thermal slug area. Excessive solder voids will increase the emitter to MCPCB thermal resistance and may lead to  
higher failure rates due to thermal over stress.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
6
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Recommended Solder Mask Layout (mm)  
Non-pedestal MCPCB Design  
Pedestal MCPCB Design  
Figure 2b: Recommended solder mask opening for anode, cathode, and thermal pad for non-pedestal and pedestal design  
Note for Figure 2b:  
1. Unless otherwise noted, the tolerance = ± 0.20 mm.  
Recommended 8 mil Stencil Apertures Layout (mm)  
Non-pedestal MCPCB Design  
Pedestal MCPCB Design  
Figure 2c: Recommended 8mil stencil apertures for anode, cathode, and thermal pad for non-pedestal and pedestal design  
Note for Figure 2c:  
1. Unless otherwise noted, the tolerance = ± 0.20 mm.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
7
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Reflow Soldering Profile  
Figure 3: Reflow soldering profile for lead free soldering.  
Typical Radiation Pattern  
Figure 4: Typical representative spatial radiation pattern.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
8
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Typical Relative Spectral Power Distribution  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
550  
600  
650  
700  
750  
800  
850  
Wavelength (nm)  
Figure 5: Relative spectral power vs. wavelength @TC = 25°C.  
Typical Forward Current Characteristics  
1,200  
1,000  
800  
600  
400  
200  
0
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
VF - Forward Voltage (V)  
Figure 6: Typical forward current vs. forward voltage @ TC = 25°C.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
9
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Typical Normalized Radiant Flux over Current  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
200  
400  
600  
800  
1000  
1200  
IF - Forward Current (mA)  
Figure 7: Typical normalized radiant flux vs. forward current @ TC = 25°C.  
Typical Normalized Radiant Flux over Temperature  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
20  
40  
60  
80  
100  
120  
TC - Case Temperature (°C)  
Figure 8: Typical normalized radiant flux vs. case temperature.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
10  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Typical Peak Wavelength Shift over Temperature  
20.0  
15.0  
10.0  
5.0  
0.0  
-5.0  
-10.0  
-15.0  
-20.0  
0
20  
40  
60  
80  
100  
120  
TC - Case Temperature (°C)  
Figure 9: Typical peak wavelength shift vs. case temperature.  
Current De-rating  
1200  
1000  
800  
700  
(Rated)  
600  
400  
200  
RΘJA = 4°C/W  
RΘJA = 5°C/W  
RΘJA = 6°C/W  
0
0
25  
50  
75  
100  
125  
TA - Ambient Temperature (°C)  
Figure 10: Maximum forward current vs. ambient temperature based on TJ(MAX) = 125°C.  
Notes for Figure 10:  
1.  
2.  
3.  
Maximum current assumes that all four LED dice are operating concurrently at the same current.  
J-C [Junction to Case Thermal Resistance] for the LZ4-00R308 is typically 2.8°C/W.  
J-A [Junction to Ambient Thermal Resistance] = RΘJ-C + RΘC-A [Case to Ambient Thermal Resistance].  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
11  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Emitter Tape and Reel Specifications (mm)  
Figure 11: Emitter carrier tape specifications (mm).  
Figure 12: Emitter Reel specifications (mm).  
Notes for Figure 12:  
1.  
2.  
3.  
Small reel quantity: up to 250 emitters  
Large reel quantity: 250-1200 emitters  
Single flux bin and single wavelength per reel.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
12  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
LZ4 MCPCB Family  
Emitter + MCPCB  
Thermal Resistance  
(oC/W)  
Diameter  
Typical Vf Typical If  
Part number Type of MCPCB  
(mm)  
(V)  
(mA)  
LZ4-4xxxxx 1-channel  
19.9  
2.8 + 1.1 = 3.9  
9.0  
700  
Mechanical Mounting of MCPCB  
.
MCPCB bending should be avoided as it will cause mechanical stress on the emitter, which could lead to  
substrate cracking and subsequently LED dies cracking.  
.
To avoid MCPCB bending:  
o
o
Special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws.  
Care must be taken when securing the board to the heat sink. This can be done by tightening three M3  
screws (or #4-40) in steps and not all the way through at once. Using fewer than three screws will  
increase the likelihood of board bending.  
o
o
It is recommended to always use plastics washers in combinations with the three screws.  
If non-taped holes are used with self-tapping screws, it is advised to back out the screws slightly after  
tightening (with controlled torque) and then re-tighten the screws again.  
Thermal interface material  
.
.
.
To properly transfer heat from LED emitter to heat sink, a thermally conductive material is required when  
mounting the MCPCB on to the heat sink.  
There are several varieties of such material: thermal paste, thermal pads, phase change materials and thermal  
epoxies. An example of such material is Electrolube EHTC.  
It is critical to verify the material’s thermal resistance to be sufficient for the selected emitter and its operating  
conditions.  
Wire soldering  
.
To ease soldering wire to MCPCB process, it is advised to preheat the MCPCB on a hot plate of 125-150oC.  
Subsequently, apply the solder and additional heat from the solder iron will initiate a good solder reflow. It is  
recommended to use a solder iron of more than 60W.  
.
It is advised to use lead-free, no-clean solder. For example: SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn:  
24-7068-7601)  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
13  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
LZ4-4xxxxx  
1 channel, Standard Star MCPCB (1x4) Dimensions (mm)  
Notes:  
Unless otherwise noted, the tolerance = ± 0.2 mm.  
Slots in MCPCB are for M3 or #4-40 mounting screws.  
LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.  
LED Engin recommends thermal interface material when attaching the MCPCB to a heatsink  
The thermal resistance of the MCPCB is: RΘC-B 1.1°C/W  
Components used  
MCPCB:  
ESD chips:  
HT04503  
BZX585-C30  
(Bergquist)  
(NXP, for 4 LED dies in series)  
Pad layout  
MCPCB  
Pad  
Ch.  
String/die Function  
1, 2, 3  
4, 5  
Cathode -  
Anode +  
1
1/ABCD  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
14  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
About LED Engin  
LED Engin, an OSRAM business based in California’s Silicon Valley, develops, manufactures, and sells advanced LED  
emitters, optics and light engines to create uncompromised lighting experiences for a wide range of  
entertainment, architectural, general lighting and specialty applications. LuxiGenTM multi-die emitter and  
secondary lens combinations reliably deliver industry-leading flux density, upwards of 5000 quality lumens to a  
target, in a wide spectrum of colors including whites, tunable whites, multi-color and UV LEDs in a unique patented  
compact ceramic package. Our LuxiTuneTM series of tunable white lighting modules leverage our LuxiGen emitters  
and lenses to deliver quality, control, freedom and high density tunable white light solutions for a broad range of  
new recessed and downlighting applications. The small size, yet remarkably powerful beam output and superior in-  
source color mixing, allows for a previously unobtainable freedom of design wherever high-flux density, directional  
light is required. LED Engin is committed to providing products that conserve natural resources and reduce  
greenhouse emissions; and reserves the right to make changes to improve performance without notice.  
For more information, please contact LEDE-Sales@osram.com or +1 408 922-7200.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ4-00R308 (1.6 - 11/19/2018)  
15  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
厂商 型号 描述 页数 下载

ETC

LZ4-00B208-0000 [ LED EMITTER BLUE 455NM SMD ] 16 页

ETC

LZ4-00UA00-0000 [ EMITTER UV 395NM 1A ] 15 页

ETC

LZ4-00UA00-00U4 [ EMITTER UV 390NM 1A ] 15 页

ETC

LZ4-00UA00-00U5 [ EMITTER UV 395NM 1A ] 15 页

ETC

LZ4-00UA00-00U7 [ EMITTER UV 405NM 1A ] 15 页

ETC

LZ4-00UA00-00U8 [ EMITTER UV 410NM 1A ] 15 页

ETC

LZ4-00WW08-0030 [ LED WARM WHITE 3000K 80CRI 8SMD ] 18 页

ETC

LZ4-00WW08-0035 [ LED WARM WHITE 3500K 80CRI 8SMD ] 18 页

ETC

LZ4-00WW08-0230 [ LED WARM WHITE 3000K 80CRI 8SMD ] 18 页

ETC

LZ4-00WW08-0427 [ LED WARM WHITE 2700K 80CRI 8SMD ] 18 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.188778s