找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

LYT1404D

型号:

LYT1404D

品牌:

POWERINT[ Power Integrations ]

页数:

14 页

PDF大小:

1336 K

LYT1402-1604  
LYTSwitch-1 Family  
Single-Stage LED Driver IC with Combined PFC and  
Constant Current Output for Buck Topology  
Product Highlights  
M
BP  
S
Single-Stage PFC + Accurate CC Output  
±3% CC regulation in single line input voltage applications  
Power factor >0.9  
D
FB  
High efficiency >93%  
LYTSwitch-1  
Robust 725 V MOSFET for increased line voltage surge performance  
Critical Conduction Mode (CrM) buck  
Low EMI  
Excellent line noise and transient rejection  
Design Flexibility  
Supports high- and low-side buck topologies  
Wide input (90 VAC – 308 VAC) and output voltage range operation  
3 family members cover power range for optimum device selection  
Requires no inductor bias winding  
PI-ꢀꢁꢂꢃ-ꢂꢄꢂꢅꢆꢃ  
Figure 1a. High-Side Buck − Typical Application Schematic.  
Highest Reliability  
Lowest component count  
Comprehensive protection features with auto-restart  
Input and output overvoltage protection (OVP)  
Output short-circuit protection  
Open-loop protection  
Advanced thermal control  
Thermal foldback ensures that light continues to be delivered at  
elevated temperatures  
Over-temperature shutdown provides protection during fault  
conditions  
LYTSwitch-1  
FB  
S
D
Description  
BP  
M
PI-ꢀꢁꢂꢃ-ꢂꢃꢂꢄꢅꢆ  
The LYTSwitch™-1 family is ideal for single-stage, high PF, constant  
current LED bulbs and tubes.  
Figure 1b. Low-Side Buck − Typical Application Schematic.  
The family incorporates a high-voltage MOSFET with a variable on-time  
CrM controller. Extensive protection features with minimum external  
components provide industry leading power density and functionality.  
The devices can be used in high-side or low-side non-isolated buck  
topology.  
Output Power Table1  
Optimized for Smallest Components  
Product3  
The CrM operation results in low turn-on losses and reduces cost of  
output diode (slower reverse recovery).  
VOUT ≤ 30 V2  
45 V ≤ VOUT ≤ 55 V2  
LYT1402D  
LYT1403D  
LYT1404D  
4.0 W  
7.5 W  
11 W  
8.0 W  
15 W  
22 W  
LYTSwitch-1 devices are suitable for applications from 2 W to 22 W.  
See Table 1 for selection guidance.  
Optimized for Lowest THD  
Product3  
VOUT ≤ 30 V2  
VOUT ≥ 55 V2  
LYT1602D  
LYT1603D  
LYT1604D  
4.0 W  
7.5 W  
11 W  
8.0 W  
15 W  
22 W  
Figure 2. SO-8 D Package.  
Table 1. Output Power Table (Buck Topology).  
Notes:  
1. Maximum practical continuous power in an open frame design with adequate  
heat sinking, measured at 50˚C ambient.  
2. Output power scales linearly if VOUT falls in between the specified voltages.  
3. Package: SO-8 (D Package).  
www.power.com  
July 2016  
This Product is Covered by Patents and/or Pending Patent Applications.  
LYT1402-1604  
ꢏꢃꢉꢌꢈ  
ꢆꢏꢇ  
ꢐYꢍꢉꢀꢀ  
ꢆꢐꢍꢇ  
ꢁꢑꢅꢀ  
LꢌꢊꢌT  
ꢀꢁꢉ  
ꢃꢅꢓꢂLꢉTꢁꢃ  
ꢔꢕ2ꢔ ꢖ  
ꢌꢈꢍꢂT  
Lꢌꢈꢅ  
ꢇꢒꢓeꢔꢕꢖꢗꢘ  
ꢀꢅꢈꢀꢅ  
ꢑꢙꢀ  
TꢋꢅꢃꢊꢉL  
ꢀꢋꢂTꢏꢁꢘꢈ  
ꢊꢂLTꢌ-  
ꢑꢂꢈꢄTꢌꢁꢈ  
ꢆꢊꢇ  
ꢗꢅꢃꢁ  
ꢄꢂꢃꢃꢅꢈT  
ꢏꢅTꢅꢄTꢌꢁꢈ  
ꢀꢁꢂꢃꢄꢅ  
ꢆꢀꢇ  
ꢑꢑꢅꢀ  
ꢁꢂT  
ꢀꢅꢈꢀꢅ  
ꢅꢑꢚꢙꢔꢛꢛ  
ꢋꢆꢚꢇꢙ  
ꢑꢉꢂLT  
ꢋꢉꢈꢏLꢌꢈꢓ  
ꢚꢅ  
ꢄ.ꢎ ꢅ  
ꢀYꢀTꢅꢊ  
ꢄLꢁꢄꢒ  
ꢅꢆꢇꢇꢈꢉ  
ꢆꢕꢔꢟꢒꢠꢡ  
0.7 ꢊ ꢅꢋBꢌRꢈꢋꢍ  
Tꢁꢈ  
ꢀTꢉTꢅ  
ꢊꢉꢄꢋꢌꢈꢅ  
ꢂꢍꢎꢏꢈ  
ꢄꢁꢂꢈTꢅꢃ  
ꢄꢁꢈTꢃꢁL  
Lꢁꢓꢌꢄ  
R1  
0 ꢅ  
ꢀꢏ  
ꢆꢕꢔꢅꢜꢝꢝeꢞ  
Rꢐ  
ꢑꢅꢅꢏꢐꢉꢄꢒ  
ꢆꢑꢐꢇ  
ꢀꢁꢂ7ꢃ07ꢂ0ꢄ0ꢄ16  
Figure 3. Block Diagram.  
Pin Functional Description  
BYPASS (BP) Pin:  
5.25 V supply rail.  
ꢀ ꢁꢂꢃꢄꢂꢅꢆ ꢇꢈꢉ-ꢊꢋ  
MULTIFUNCTION (M) Pin:  
Mode 1: FET OFF  
Detection of inductor de-magnetization (ZCD) to ensure CrM.  
Output OVP Sensing (120 % of VOUT nominal).  
Steady-state operation voltage range is [1 V – 2.4 V].  
Mode 2: FET ON  
1
2
4
ꢌꢁ  
6
ꢎꢌ  
Line OVP.  
FEEDBACK (FB) Pin:  
FET current sensing using external current sense resistor.  
Normal operation voltage range is [VFB(REF) – 0 V].  
ꢀꢁꢂ7ꢃ0ꢄꢂ0ꢅꢆꢆ16  
DRAIN (D) Pin:  
High-voltage internal MOSFET.  
Figure 4. Pin Configuration.  
SOURCE (S) Pin:  
Power and signal ground.  
2
Rev. B 07/16  
www.power.com  
LYT1402-1604  
Applications Design Example  
Wide Input 8 W Bulb Driver Accurate Regulation, High  
Power Factor, Low ATHD Design Example (RDK-464)  
Rꢆ  
1ꢇ.ꢆ ꢈ  
1ꢉ  
R7  
ꢆ0ꢇ ꢈΩ  
1ꢉ  
R6  
ꢇ.ꢆꢃ Ω  
1ꢉ  
1/ꢄ ꢊ  
ꢒꢓ  
ꢙꢙ10  
1 ꢗꢘ  
1/ꢄ ꢊ  
ꢐ1  
ꢓ.ꢓ ꢗꢘ  
ꢀꢁ  
60 ꢉꢊ 1ꢋꢌ ꢍꢎ  
ꢏꢉ  
1
Rꢋ  
0.6ꢄ Ω  
1ꢉ  
ꢌꢋ  
ꢆ.7 µꢍ  
ꢕꢀ  
BR1  
10 ꢎ  
B10ꢅꢂꢚ  
1000 ꢎ  
Rꢍ1  
10 Ω  
ꢇ ꢊ  
LYTꢃꢄꢅꢆꢇꢈ-1  
ꢏ1  
ꢐꢑꢒ160ꢓꢔ  
L
ꢌ1  
ꢆ7 µꢍ  
ꢆ00 ꢎ  
ꢌꢆ  
1ꢋ0 ꢖꢍ  
ꢆꢋ0 ꢎ  
Rꢄ  
ꢌ6  
ꢔ1  
ꢏꢅ1ꢕ  
100 ꢈΩ  
1ꢋ0 µꢍ  
Rꢎ1  
ꢓ00 ꢎꢛꢌ  
ꢒ0 - ꢋ00  
ꢉꢎꢓ  
1/ꢄ ꢊ  
6ꢓ ꢎ  
ꢐTꢑ  
ꢀꢁꢂ7ꢃꢄ7ꢂ0610ꢅ16  
Figure 5. Schematic from RDK-464 8 W, 60 V, 135 mA, Non-isolated A19 LED Driver for Wide Input Range: 90 – 300 V VAC using LYT1603D in High-Side Buck  
Configuration.  
The circuit shown in Figure 5 is configured as high-side buck power  
supply utilizing the LYT1603D from the LYTSwitch-1 family of ICs.  
This is a low-cost LED driver designed to drive a 60 V LED voltage  
string at 135 mA output current with an input voltage range of  
90 VAC to 300 VAC.  
The rectified AC supply through BR1 is filtered by the input capacitors  
C1 and C4. Too much capacitance degrades power factor and THD,  
so the values of the input capacitors were adjusted to the minimum  
values necessary to meet EMI with a suitable margin. Inductor L1,  
C1 and C4 form a π (pi) filter, which attenuates conducted differential  
and common mode EMI currents. A resistor of at least 10 k(not  
shown) across L1 can be used damp the Q-factor of the filter inductor  
to improve filtering high frequency EMI without reducing low  
frequency attenuation.  
Circuit Description  
LYTSwitch-1 is a SO-8 package LED driver controller IC designed for  
non-isolated buck topology applications. The LYTSwitch-1 provides  
high efficiency, high power factor and accurate LED current regula-  
tion. It incorporates a high-voltage 725 V power MOSFET and a  
control engine to switch the FET in critical conduction mode with  
variable frequency and variable on-time for low EMI, accurate current  
regulation, high power factor, low THD and high efficiency. The  
controller also integrates protection features such as input and output  
overvoltage protection, thermal fold-back, over-temperature  
shutdown, output short-circuit and over-current protection.  
LYTSwitch-1 Controller Stage  
The LED driver circuit is a high-side buck configuration operating in  
critical condition mode. During the time the internal MOSFET is on,  
current ramps up through inductor T3, storing energy in the magnetic  
field and at the same time supplying current to the load. Then when  
the internal MOSFET turns off, the current will continue to flow in the  
same direction ramping down, to the output load via flywheel diode D1.  
Capacitor C5 provides local decoupling for the BYPASS (BP) pin of  
LYTSwitch-1 IC, which provides power to the controller during the  
switch on time. The IC internal regulator draws power from the  
high-voltage DRAIN (D) pin and charges the bypass capacitor C5  
during the power switch off-time. The typical BYPASS pin voltage is  
5.22 V. To keep the IC operating normally especially during the dead  
zone, where VIN < VOUT, the value of the capacitor should be large  
enough to keep the bypass voltage above the VBP(RESET) reset value of  
4.5 V. Recommended minimum value for the bypass capacitor is  
4.7 mF, X7R if using a ceramic type capacitor.  
Input Stage  
The input fusible resistor RF1 provides safety protection and also  
serves as a current limiting component against high-voltage differen-  
tial surge. Varistor RV1 acts as a voltage clamp that limits the voltage  
spike on the primary during line transient voltage surge events. A  
300 VAC rated part was selected with a maximum clamping voltage  
specification of 710 VDC lower than the device drain voltage (725 V).  
The AC input voltage is full wave rectified by BR1 to achieve good  
power factor and low THD. For higher surge capability such as  
>1 kV, C1 and L1 can be placed before the bridge rectifier BR1 in the  
same order and RV1 after BR1 but, a safety X-capacitor is required to  
be used for C1.  
3
Rev. B 07/16  
www.power.com  
LYT1402-1604  
Constant output current regulation is achieved through the FEED-  
BACK (FB) pin directly sensing the drain current during the FET  
on-time using external current sense resistors (RFB) R5 and R6 and  
comparing the voltage drop to a fixed internal reference voltage  
(VFB(REF)) of absolute value 279 mV typical. RFB can be estimated by  
the given equation;  
A small output pre-load resistor R8 discharges the output capacitor  
when the driver is turned off, giving a relatively quick and smooth  
decay of the LED light. Recommended pre-load power dissipation is  
≤ 0.5% of the output power.  
Key Design Considerations  
Device Selection  
RFB = VFB(REF) /k # IOUT  
The data sheet power table (Table 2) represents the maximum  
practical continuous output power that can be delivered in an open  
frame design with adequate heat sinking.  
Where: k is the ratio between IPK and IOUT; such that k = 3 for  
LYT-14xx, and k = 3.6 for LYT-16xx)  
RDK-464 is a universal input 8 W driver for bulb application, where  
the operating temperature is high and a relatively low THD less than  
25% is desired for universal input application. LYT1603D was chosen  
based on these conditions.  
Trimming RFB may be necessary to center IOUT at the nominal output  
LED voltage.  
The MULTIFUNCTION (M) pin monitors the line for any line overvolt-  
age event. When the internal MOSFET is in on-state, the MULTI-  
FUNCTION pin is shorted internally to the SOURCE (S) pin in order to  
detect the rectified input line voltage derived for the voltage across  
the inductor, i.e. (VIN – VOUT) and current flowing out of the MULTI-  
FUNCTION pin is defined by resistor R7, thus the line over voltage  
detection is calculated as follows;  
Output Power Table  
Optimized for Smallest Components  
Product  
VOUT ≤ 30 V  
45 V ≤ VOUT ≤ 55 V  
LYT1402D  
LYT1403D  
LYT1404D  
4.0 W  
7.5 W  
11 W  
8.0 W  
15 W  
22 W  
VLINE(OVP) = IIOV # R7 + VOUT  
Where: R7 is assumed to be 402 k±1%.  
Once the detected current exceeds the input overvoltage threshold  
(IIOV) of 1 mA typical, the IC will inhibit switching instantaneously and  
initiate auto-restart to protect the internal MOSFET of the IC.  
Optimized for Lowest THD  
Product  
VOUT ≤ 30 V  
VOUT ≥ 55 V  
The MULTIFUNCTION (M) pin also monitors the output for any  
overvoltage and undervoltage event. When the internal MOSFET is in  
off-state, the output voltage is sensed via divider resistors R4 and R7  
across the inductor voltage of T3. When an output open-load condition  
occurs, the voltage at the MULTIFUNCTION pin will rise abruptly and  
when it exceeds the VOOV threshold of 2.4 V typical, the IC will inhibit  
switching and initiate auto-restart to limit the output voltage from  
further rising. The overvoltage cut-off is typically set to 120% of the  
output voltage, which is equivalent to 2 V target at the MULTIFUNC-  
TION pin (VOUT(OVP) = VOUT × 2.4 V / 2 V). If desired, higher overvolt-  
age cut-off can be set with lower MULTIFUNCTION pin voltage target.  
Resistor R7 is set to a fixed value of 402 k±1% and R4 will determine  
the output overvoltage limit. Any output short-circuit at the output  
will be detected once the MULTIFUNCTION pin voltage falls below the  
undervoltage threshold (VOUV) of 1 V typical, then the IC will inhibit  
switching and initiate auto-restart to limit the average input power of  
less than 1 W, preventing any component from overheating.  
LYT1602D  
LYT1603D  
4.0 W  
7.5 W  
11 W  
8.0 W  
15 W  
22 W  
LYT1604D  
Table 2. Output Power Table.  
Magnetic Selection  
The core is a small size EE10 with ferrite core material and open  
winding window that allowed better convection cooling for the  
winding.  
To ensure proper magnetic design and accurate output current  
regulation, it is recommended that the LYTSwitch-1 PIXls spreadsheet  
located at PI Expert web site (https://piexpertonline.power.com/site/  
login) should be used for magnetic calculations.  
EMI Considerations  
Total input capacitance affects PF and THD – increasing the value will  
degrade performance. LYTSwitch-1’s control engine allows operating  
in critical conduction mode with variable frequency and variable  
on-time provides low EMI and enables the use of small and simple pi  
(π) filter. It also allows simple magnetic construction where the main  
winding can be wound continuously using the automated winding  
approach preferred for low-cost manufacturing. The recommended  
location of the EMI filter is after the bridge rectifier. This allows the  
use of regular film capacitors as opposed to more expensive safety  
rated X-capacitors that would be required if the filter is placed before  
the bridge.  
R4 can be calculated as follows;  
^
h
R4 = 2V # R7/ VOUT - 2V  
This is also applicable to Low-Side Configuration Buck topology  
(see application note AN-67).  
Another function of the MULTIFUNCTION (M) pin is for zero current  
detection (ZCD). This is to ensure operation in critical conduction  
mode. The inductor demagnetization is sensed when the voltage  
across the inductor begins to collapse towards zero as flywheel diode  
(D1) conduction expires.  
Thermal and Lifetime Considerations  
Output Stage  
Lighting applications present thermal challenges to the driver. In  
many cases the LED load dissipation determines the working ambient  
temperature experienced by the drive. Thermal evaluation should be  
performed with the driver inside the final enclosure. Temperature  
has a direct impact on driver and LED lifetime. For every 10 °C rise in  
temperature, component life is reduced by a factor of 2. Therefore, it  
is important to verify and optimize the operating temperatures of all  
components.  
During the switching off-state, free-wheeling diode D1 rectifies the  
voltage across T3 and the output filtered by C6. An ultrafast 1 A,  
600 V with 75 ns reverse recovery time (tRR) diode was selected for  
efficiency and good regulation. The value of the output capacitor C8  
was selected to give peak-to-peak LED ripple current equal to 30% of  
the mean value. For designs where lower ripple is desirable, the  
output capacitance value can be increased.  
4
Rev. B 07/16  
www.power.com  
LYT1402-1604  
The bypass supply capacitor C5 should be placed directly across  
BYPASS pin and SOURCE pin of U1 for effective noise decoupling.  
PCB Layout Considerations  
In Figure 6, the EMI filter components should be located close  
together to improve filter effectiveness. Place the EMI filter compo-  
nents C1 and L1 as far away as possible from any switching nodes on  
the circuit board especially U1 drain node, output diode (D1) and the  
transformer (T3).  
As shown in Figure 6, minimize the loop areas of the following  
switching circuit elements to lessen the creation of EMI.  
Loop area formed by the transformer winding (T3), free-wheeling  
rectifier diode (D1) and output capacitor (C6).  
Loop area formed by input capacitor (C4), U1 internal MOSFET,  
free-wheeling rectifier diode (D1) and sense resistor (R5).  
Care should be taken in placing the components on the layout that  
are used for processing input signals for the feedback loop that any  
high frequency noise coupled to the signal pins of U1 may affect  
proper system operation. The critical components in RDK-464 are R4,  
R5, R6, R7 and C5. It is highly recommended that these components  
be placed very close to the pins of U1 (to minimize long traces which  
could serve as antenna) and far away as much as possible from any  
high-voltage and high current nodes in the circuit board to avoid  
noise coupling.  
LYTSwitch-1 Low-Side Configuration  
In Figure 8, LYTSwitch-1 employs low-side Buck configuration and the  
ground potential SOURCE pins are used for heat sinking. This allows  
the designer to maximize the copper area for good thermal manage-  
ment but, without having the risk of increased EMI.  
ꢀꢁꢂꢃꢄꢅꢁꢆꢇꢃꢄꢈꢆ ꢉꢊꢋ  
ꢌꢊvꢊꢍeꢎ Reꢏꢊꢏꢐꢑꢎꢏ R7 ꢒ Rꢓ  
ꢂꢭꢃꢚꢮꢊꢐꢨꢝꢡ1  
ꢀꢔꢕꢊꢖꢊꢗeꢍ ꢇꢑꢘꢘeꢎ  
ꢤꢁ1ꢥ  
ꢙeꢔꢐ ꢚꢊꢋꢛ  
ꢀꢁꢂꢃT  
ꢄꢃTꢂꢃT  
ꢃꢊꢜꢝꢐ ꢂꢑꢑꢘ ꢞꢎeꢔ ꢅꢑꢎꢖeꢍ ꢟꢠ ꢄꢋꢘꢧꢐ  
ꢇꢔꢘꢔꢨꢊꢐꢑꢎ ꢤꢇꢓꢥꢦ ꢅꢎeeꢡꢢꢝeeꢣꢊꢋꢜ ꢌꢊꢑꢍe ꢤꢌ1ꢥꢦ  
ꢈꢧꢐꢘꢧꢐ ꢇꢔꢘꢔꢨꢊꢐꢑꢎ ꢤꢇ6ꢥꢦ ꢀꢈꢚꢅꢫꢃ ꢤꢁ1ꢥꢦ  
ꢚeꢋꢏe Reꢏꢊꢏꢐꢑꢎ ꢤRꢬꢥ Rꢪ ꢒ ꢇꢓ  
Bꢭꢉꢞꢚꢚ ꢉꢊꢋ  
ꢇꢔꢘꢔꢨꢊꢐꢑꢎ ꢇꢬ  
ꢃꢊꢜꢝꢐ ꢂꢑꢑꢘ ꢞꢎeꢔ ꢅꢑꢎꢖeꢍ ꢟꢠ ꢐꢝe  
ꢅꢎeeꢡꢢꢝeeꢣꢊꢋꢜ ꢌꢊꢑꢍe ꢤꢌ1ꢥꢦ ꢈꢧꢐꢘꢧꢐ  
ꢇꢔꢘꢔꢨꢊꢐꢑꢎ ꢤꢇ6ꢥꢦ ꢄꢋꢍꢧꢨꢐꢑꢎ ꢤꢃꢩꢥ  
ꢉꢄꢡ7ꢪꢯꢯꢡ061016  
Rꢪ ꢒ ꢇꢓ  
Figure 6. Design Example RDK-464 PCB Layout Showing the Critical Loop Areas with LYTSwitch-1 in High-Side Buck Configuration.  
120 ꢆꢇ 1ꢈ0 ꢉꢊ  
ꢆꢋ  
R1  
BR1  
B10ꢈꢂꢙ  
1000 ꢊ  
10 ꢕ  
1/ꢅ ꢐ  
ꢓ1  
1 ꢑ  
L
ꢋ1  
ꢔ.7 ꢍꢎ  
Rꢔ  
ꢌ00 ꢕ  
1/ꢅ ꢐ  
ꢒꢌ  
1ꢄ0 ꢗꢓ  
ꢔꢄ0 ꢊ  
ꢒꢖ  
6ꢅ µꢓ  
160 ꢊ  
ꢆ1  
ꢇꢈ1ꢉ  
600 ꢊ  
Rꢊ1  
ꢌ7ꢄ ꢊꢑꢒ  
ꢒ1  
100 ꢗꢓ  
ꢖ0ꢄ ꢊ  
1ꢍ0 - ꢎ00  
ꢆꢊꢏ  
R7  
LYTꢃꢑꢒꢓꢔꢕ-1  
ꢌ.ꢌ  
ꢋꢚꢛ160ꢔꢆ  
1ꢏ  
1/ꢅ ꢐ  
ꢒꢄ  
Rꢖ  
ꢌ00 ꢕ  
1ꢏ  
ꢁꢂ  
ꢔ.7 µꢓ  
ꢐTꢌ  
16 ꢊ  
ꢋꢌ  
ꢆ-  
R6  
Rꢄ  
6.ꢅ1 ꢕ  
1ꢏ  
1.ꢄ ꢍꢎ  
ꢒꢔ  
ꢂꢅ  
0.ꢄ1  
1ꢏ  
ꢀꢁꢂ7ꢃꢄꢃꢂ0ꢄ1ꢅ16  
100 ꢘꢓ  
1000 ꢊ  
1/ꢅ ꢐ  
1/16 ꢐ  
Rꢌ  
ꢌ00 ꢕ  
1ꢏ  
1/ꢅ ꢐ  
Figure 7. Schematic from DER-548 a 20 W, 120 V-170 mA Non-isolated LED Driver for Tube with High-line Input Range of 190 – 300 VAC using LYT1604D.  
5
Rev. B 07/16  
www.power.com  
LYT1402-1604  
ꢐꢃꢑꢒꢌ ꢓꢈꢈꢉ ꢔꢊeꢁ ꢕꢈꢊꢄeꢆ ꢖꢗ ꢣꢎꢉꢠꢌ  
ꢇꢁꢉꢁꢡꢃꢌꢈꢊ ꢜꢇꢤꢝꢞ ꢕꢊeeꢘꢙꢒeeꢚꢃꢎꢑ ꢛꢃꢈꢆe ꢜꢛ1ꢝꢞ  
ꢀꢟꢍꢕꢥꢐ ꢜꢦ1ꢝꢞ ꢍeꢎꢧe Reꢧꢃꢧꢌꢈꢊ ꢜR6ꢝ  
ꢐꢃꢑꢒꢌ ꢓꢈꢈꢉ ꢔꢊeꢁ ꢕꢈꢊꢄeꢆ ꢖꢗ ꢌꢒe  
ꢕꢊeeꢘꢙꢒeeꢚꢃꢎꢑ ꢛꢃꢈꢆe ꢜꢛ1ꢝꢞ ꢟꢠꢌꢉꢠꢌ  
ꢇꢁꢉꢁꢡꢃꢌꢈꢊ ꢜꢇꢢꢝꢞ ꢣꢎꢆꢠꢡꢌꢈꢊ ꢜꢓꢤꢝ  
ꢀꢁꢂꢃT  
ꢄꢃTꢂꢃT  
ꢀꢁꢂꢃꢄꢃꢅeꢆ ꢇꢈꢉꢉeꢊ  
ꢋeꢁꢌ ꢍꢃꢎꢏ  
ꢀꢦꢓꢐꢣꢕꢦꢨꢇꢐꢣꢟꢨ ꢩꢃꢎ  
ꢇꢁꢉꢁꢡꢃꢌꢈꢊ ꢜꢇꢪꢝꢞ ꢛꢃvꢃꢆeꢊ  
Reꢧꢃꢧꢌꢈꢊꢧ Rꢤ ꢫ Rꢬ  
Bꢭꢩꢔꢍꢍ ꢩꢃꢎ  
ꢇꢁꢉꢁꢡꢃꢌꢈꢊ ꢇꢬ  
ꢓꢭꢐꢍꢮꢃꢌꢡꢒꢘ1  
ꢜꢦ1ꢝ  
ꢩꢣꢘ7ꢯꢰꢯꢘ061016  
Figure 8. Design Example DER-548 PCB Layout Showing the Critical Components and Loop Areas with LYTSwitch-1 in Low-Side Buck Configuration.  
Since the switch MOSFET is referenced to ground, the low-side buck  
configuration would also give an advantage of using a low-cost  
Quick Design Checklist  
Maximum Drain Voltage  
off-the-shelf dog bone type inductor as demonstrated in the design  
Verify that the peak Drain voltage stress (VDS) does not exceed  
example DER-548. The addition of a small capacitor C4 (Figure 7) is  
725 V under all operating conditions, including start-up and fault  
needed to couple the high-voltage referenced signal of the output  
conditions.  
voltage into the MULTIFUNCTION pin of the IC through the resistor  
divider network R2, R3 and R5. Based on the simulation and bench  
Maximum Drain Current  
results capacitance of 100 pF is a good compromise between AC line  
Measure the peak Drain current under all operation conditions  
rejection and flatness of the output voltage during the off-time of the  
(including start-up and fault conditions). Look for transformer  
switch. Based on capacitance tolerance, 68 pF to 150 pF range can  
saturation (usually occurs at highest operating ambient temperatures).  
be used.  
Verify that the peak current is less than the stated Absolute Maximum  
Rating in the data sheet.  
Design Tools  
Thermal Check  
Up-to-date information on design tools can be found at the Power  
At maximum output power, for both minimum and maximum line  
Integrations web site: www.power.com  
voltage and maximum ambient temperature verify that component’s  
LYTSwitch-1 PIXls spreadsheet is located at PI Expert online:  
https://piexpertonline.power.com/site/login  
temperature specifications are not exceeded for the LYTSwitch-1,  
transformer, output diodes and output and input capacitors.  
6
Rev. B 07/16  
www.power.com  
LYT1402-1604  
Absolute Maximum Ratings(1,3)  
DRAIN Pin Voltage: LYT1x0x............................-0.3 V to 725 V Notes:  
DRAIN Pin Peak Current: LYT1x02 ...........................1.05 A (1.3 A)(1) 1. The higher peak Drain current (in parentheses) is allowed while the  
LYT1x03 .............................2.1 A (2.6 A)(1)  
LYT1x04 ............................ 2.8 A (3.5 A)(1)  
Drain voltage is simultaneously less than 400 V for 725 V integrated  
MOSFET.  
BYPASS Pin Voltage ...................................................-0.3 V to 6.0 V 2. In case SOURCE pin is open, -0.7 V between FEEDBACK pin and  
MULTIFUNCTION, FEEDBACK Pin Voltage................ -0.45 V to 7.0 V(2)  
SOURCE pin is observed with no degradation in performance.  
Lead Temperature ................................................................ 260 °C 3. The Absolute Maximum Ratings specified may be applied, one at a  
Storage Temperature...................................................-65 to 150 °C  
time without causing permanent damage to the product. Exposure  
to Absolute Maximum Ratings for extended periods of time may  
affect product reliability.  
Operating Junction Temperature................................-40 to 150 °C(4)  
4. Normally limited by internal circuitry.  
Thermal Resistance  
Thermal Resistance: SO-8 Package:  
Notes:  
(qJA)................................100 °C/W(2), 80 °C/W(3) 1. Measured on the SOURCE pin close to plastic interface.  
(qJC)(1) ................................................30 °C/W 2. Soldered to 0.36 sq. inch (232 mm2) 2 oz. (610 g/m2) copper clad,  
with no external heat sink attached.  
3. Soldered to 1 sq. in. (645 mm2), 2 oz, (610 g/m2) copper clad.  
Conditions  
SOURCE = 0 V  
TJ = -40 °C to 125 °C  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
Control Functions  
Minimum Switching  
Frequency  
fMIN  
18  
20  
40  
22  
45  
kHz  
ms  
Maximum Switch  
ON-Time  
TON(MAX)  
TON(MIN)  
VFB(REF)  
VTH(DZ)  
TCC(MAX)  
37.5  
1.012  
-285  
Minimum Switch  
ON-Time  
1.1  
-279  
1.25  
-273  
ms  
FEEDBACK Pin  
Reference Voltage  
TJ = 25 °C  
See Note C  
mV  
V
Dead Zone Detect  
Threshold  
0.3 ×  
VFB(REF)  
Maximum Constant  
Current Zone  
6
ms  
Forced Minimum  
Constant Current Zone  
TCC(MIN)  
ISBY  
1.2  
ms  
Standby (MOSFET not switching)  
LYT1x02  
180  
680  
785  
850  
-4.5  
-2  
mA  
BYPASS Pin  
Supply Current  
IDSS  
MOSFET Switching  
LYT1x03  
LYT1x04  
mA  
ICH1  
ICH2  
VBP  
VBP = 0.0 V, VDS ≥ 36 V  
VBP = 5.0 V, VDS ≥ 36 V  
-10  
-6  
mA  
mA  
V
BYPASS Pin  
Charge Current  
BYPASS Pin Voltage  
5.075  
5.22  
5.35  
7
Rev. B 07/16  
www.power.com  
LYT1402-1604  
Conditions  
SOURCE = 0 V  
TJ = -40 °C to 125 °C  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
Control Functions (cont.)  
BYPASS Pin  
Shunt Voltage  
VBP(SHUNT)  
5.2  
5.39  
4.5  
5.55  
4.65  
V
V
BYPASS Pin Power-Up  
Reset Threshold Voltage  
VBP(RESET)  
4.35  
Circuit Protection  
di/dt = 277 mA/ms  
LYT1x02  
0.59  
1.06  
1.61  
0.65  
1.15  
1.75  
250  
0.70  
1.24  
1.88  
400  
TJ = 25 °C  
Current Limit for  
Auto-Restart  
di/dt = 446 mA/ms  
LYT1x03  
ILIMIT(AR)  
A
TJ = 25 °C  
di/dt = 662 mA/ms  
LYT1x04  
TJ = 25 °C  
Fault Minimum Switch  
ON-Time  
TFAULT(MIN)  
ns  
ms  
mA  
V
TAR(OFF)1  
TAR(OFF)2  
100  
Auto-Restart  
TJ = 25 °C  
TJ = 25 °C  
TJ = 25 °C  
1000  
Input Overvoltage  
Threshold  
IIOV  
0.9  
2.3  
1.0  
2.4  
1.1  
MULTIFUNCTIONAL Pin  
Auto-Restart Threshold  
Voltage (Output OVP)  
VOOV  
2.48  
MULTIFUNCTIONAL Pin  
Undervoltage Threshold  
(Output Short)  
TJ = 25 °C  
See Note B  
VOUV  
0.91  
138  
0.95  
0.99  
152  
V
Junction Temperature  
at Fold-Back  
TFB  
TSD  
See Note B  
See Note A  
See Note A  
145  
160  
75  
°C  
°C  
°C  
Thermal Shutdown  
Temperature  
Thermal Shutdown  
Hysteresis  
TSD(H)  
8
Rev. B 07/16  
www.power.com  
LYT1402-1604  
Conditions  
SOURCE = 0 V  
TJ = -40 °C to 125 °C  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
Output  
TJ = 25 °C  
9.2  
14.0  
4.5  
6.8  
3.4  
10.6  
16.1  
5.2  
7.8  
3.9  
5.8  
40  
LYT1x02  
ID = 91 mA  
TJ = 100 °C  
TJ = 25 °C  
LYT1x03  
ID = 139 mA  
ON-State Resistance  
RDS(ON)  
TJ = 100 °C  
TJ = 25 °C  
LYT1x04  
ID = 182 mA  
TJ = 100 °C  
5.1  
LYT1x02  
VBP = 5.25 V,  
VDS = 580 V  
OFF-State Leakage  
Breakdown Voltage  
IDSS1  
LYT1x03  
LYT1x04  
55  
mA  
TJ = 125 °C  
70  
BVDSS  
LYT1x0x  
725  
V
NOTES:  
A. Guaranteed by design.  
B. This parameter is derived from characterization. Non-production test.  
C. All parts are individually trimmed in production to deliver the best CC accuracy.  
9
Rev. B 07/16  
www.power.com  
LYT1402-1604  
Typical Performance Characteristics  
1.ꢀ  
1000  
100  
10  
ꢄꢅꢆꢇ ꢈ ꢀꢉ °ꢄ  
ꢄꢅꢆꢇ ꢈ 100 °ꢄ  
ꢈꢉꢊꢋꢌꢍꢎ ꢏꢊꢉꢐꢑꢒꢓꢔ  
ꢄꢅꢆ1ꢇ0ꢁ 1.0  
ꢄꢅꢆ1ꢇ0ꢂ ꢁ.0  
ꢄꢅꢆ1ꢇ0ꢃ ꢁ.7  
1
0.ꢂ  
0.6  
0.ꢁ  
ꢆꢎꢏꢐꢑꢒꢓ ꢔꢏꢎꢕꢖꢗꢘꢙ  
ꢊꢋꢃ1ꢌ0ꢀ 1.0  
ꢊꢋꢃ1ꢌ0ꢍ ꢀ.0  
ꢊꢋꢃ1ꢌ0ꢁ ꢀ.7  
0.ꢀ  
0
1
0
6
10 1ꢀ 1ꢁ 16 1ꢂ ꢀ0  
0
ꢀ0 100 1ꢀ0 ꢁ00 ꢁꢀ0 ꢂ00 ꢂꢀ0 ꢃ00 ꢃꢀ0  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈꢉꢊꢋ ꢌꢅꢍ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈꢉꢊꢋ ꢌꢅꢍ  
Figure 1. DRAIN Pin Current vs. Drain Pin Voltage.  
Figure 2. DRAIN Pin Capacitance vs. DRAIN Pin Voltage.  
1.ꢀ  
1
0.ꢂ  
0.6  
0.ꢁ  
0.ꢀ  
0
0
100 ꢀ00 ꢃ00 ꢁ00 ꢄ00 600 700 ꢂ00  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈꢉꢊꢋ ꢌꢅꢍ  
Figure 3. Maximum Allowable DRAIN Pin Current vs. DRAIN Pin Voltage.  
10  
Rev. B 07/16  
www.power.com  
LYT1402-1604  
SO-8 (D Package)  
0.10 (0.004)  
A-B  
2X  
C
2
DETAIL A  
B
4
4.90 (0.193) BSC  
A
4
D
8
5
GAUGE  
PLANE  
SEATING  
PLANE  
3.90 (0.154) BSC  
6.00 (0.236) BSC  
2
0 - 8o  
C
0.25 (0.010)  
BSC  
1.04 (0.041) REF  
0.10 (0.004)  
C D  
0.40 (0.016)  
1.27 (0.050)  
2X  
1
4
Pin 1 ID  
0.20 (0.008)  
C
2X  
7X 0.31 - 0.51 (0.012 - 0.020)  
0.25 (0.010)  
1.27 (0.050) BSC  
M
C A-B D  
1.25 - 1.65  
(0.049 - 0.065)  
1.35 (0.053)  
1.75 (0.069)  
DETAIL A  
H
0.10 (0.004)  
0.25 (0.010)  
0.10 (0.004)  
C
7X  
SEATING PLANE  
0.17 (0.007)  
0.25 (0.010)  
C
Reference  
Solder Pad  
Dimensions  
+
Notes:  
1. JEDEC reference: MS-012.  
1.45 (0.057) 4.00 (0.157) 5.45 (0.215)  
2. Package outline exclusive of mold flash and metal burr.  
3. Package outline inclusive of plating thickness.  
4. Datums A and B to be determined at datum plane H.  
5. Controlling dimensions are in millimeters. Inch dimensions  
are shown in parenthesis. Angles in degrees.  
+
+
+
1.27 (0.050)  
0.60 (0.024)  
D08A  
PI-5615-020515  
11  
Rev. B 07/16  
www.power.com  
LYT1402-1604  
MSL Table  
Part Number  
MSL Rating  
LYT1402D  
LYT1403D  
LYT1404D  
LYT1602D  
LYT1603D  
LYT1604D  
1
1
1
1
1
1
ESD and Latch-Up Table  
Test  
Conditions  
JESD78D  
Results  
Latch-up at 125 °C  
Human Body Model ESD  
Machine Model ESD  
> ±100 mA or > 1.5 × V(max) on all pins  
> ±2000 V on all pins  
ANSI/ESDA/JEDEC JS-001-2012  
JESD22-A115CA  
> ±200 V on all pins  
Charged Device Model ESD  
JESD22-C101  
> ±500 V on all pins  
Part Ordering Information  
• LYTSwitch-1 Product Family  
• Series Number  
• Package Identifier  
D
SO-8  
• Tape & Reel and Other Options  
Blank  
TL  
Standard Configuration of 100 pcs.  
Tape & Reel, 2500 pcs min/mult.  
LYT 1604 D - TL  
12  
Rev. B 07/16  
www.power.com  
LYT1402-1604  
Notes  
13  
Rev. B 07/16  
www.power.com  
Revision Notes  
Date  
A
B
Code S.  
05/16  
Code A. Updated TBD’s in parameter table. Updated Typical values in UFB(REF), TCC(MAX), IDSS, VOUV parameters. Added Typical  
Performance Characteristics and Applications section.  
07/16  
For the latest updates, visit our website: www.power.com  
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations  
does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY  
HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,  
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.  
Patent Information  
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one  
or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of  
Power Integrations patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set  
forth at http://www.power.com/ip.htm.  
Life Support Policy  
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:  
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose  
failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or  
death to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the  
failure of the life support device or system, or to affect its safety or effectiveness.  
The PI logo, TOPSwitch, TinySwitch, SENZero, SCALE-iDriver, Qspeed, PeakSwitch, LYTSwitch, LinkZero, LinkSwitch, InnoSwitch, HiperTFS,  
HiperPFS, HiperLCS, DPA-Switch, CAPZero, Clampless, EcoSmart, E-Shield, Filterfuse, FluxLink, StakFET, PI Expert and PI FACTS are trademarks of  
Power Integrations, Inc. Other trademarks are property of their respective companies. ©2016, Power Integrations, Inc.  
Power Integrations Worldwide Sales Support Locations  
World Headquarters  
5245 Hellyer Avenue  
San Jose, CA 95138, USA.  
Main: +1-408-414-9200  
Customer Service:  
Phone: +1-408-414-9665  
Fax: +1-408-414-9765  
e-mail: usasales@power.com  
Germany  
Lindwurmstrasse 114  
80337 Munich  
Italy  
Singapore  
51 Newton Road  
Via Milanese 20, 3rd. Fl.  
20099 Sesto San Giovanni (MI) Italy #19-01/05 Goldhill Plaza  
Phone: +39-024-550-8701  
Fax: +39-028-928-6009  
e-mail: eurosales@power.com  
Germany  
Singapore, 308900  
Phone: +65-6358-2160  
Fax: +65-6358-2015  
Phone: +49-895-527-39110  
Fax: +49-895-527-39200  
e-mail: eurosales@power.com  
e-mail: singaporesales@power.com  
Japan  
Kosei Dai-3 Bldg.  
Germany  
Taiwan  
China (Shanghai)  
Rm 2410, Charity Plaza, No. 88  
North Caoxi Road  
Shanghai, PRC 200030  
Phone: +86-21-6354-6323  
Fax: +86-21-6354-6325  
e-mail: chinasales@power.com  
HellwegForum 1  
59469 Ense  
Germany  
Tel: +49-2938-64-39990  
e-mail: igbt-driver.sales@  
power.com  
2-12-11, Shin-Yokohama,  
Kohoku-ku  
Yokohama-shi, Kanagawa  
222-0033 Japan  
Phone: +81-45-471-1021  
Fax: +81-45-471-3717  
e-mail: japansales@power.com  
5F, No. 318, Nei Hu Rd., Sec. 1  
Nei Hu Dist.  
Taipei 11493, Taiwan R.O.C.  
Phone: +886-2-2659-4570  
Fax: +886-2-2659-4550  
e-mail: taiwansales@power.com  
India  
UK  
China (Shenzhen)  
17/F, Hivac Building, No. 2, Keji Nan Vasanthanagar  
#1, 14th Main Road  
Korea  
RM 602, 6FL  
Cambridge Semiconductor,  
a Power Integrations company  
Westbrook Centre, Block 5, 2nd Floor  
Milton Road  
Cambridge CB4 1YG  
Phone: +44 (0) 1223-446483  
e-mail: eurosales@power.com  
8th Road, Nanshan District,  
Shenzhen, China, 518057  
Phone: +86-755-8672-8689  
Fax: +86-755-8672-8690  
e-mail: chinasales@power.com  
Bangalore-560052 India  
Phone: +91-80-4113-8020  
Fax: +91-80-4113-8023  
Korea City Air Terminal B/D, 159-6  
Samsung-Dong, Kangnam-Gu,  
Seoul, 135-728, Korea  
Phone: +82-2-2016-6610  
Fax: +82-2-2016-6630  
e-mail: koreasales@power.com  
e-mail: indiasales@power.com  
厂商 型号 描述 页数 下载

POWERINT

LYT0002 元件数最少,离线式开关IC,适用于非隔离LED照明应用[ Lowest Component Count, Off-Line Switcher IC for Non-Isolated LED Lighting Applications ] 18 页

POWERINT

LYT0004 元件数最少,离线式开关IC,适用于非隔离LED照明应用[ Lowest Component Count, Off-Line Switcher IC for Non-Isolated LED Lighting Applications ] 18 页

POWERINT

LYT0005 元件数最少,离线式开关IC,适用于非隔离LED照明应用[ Lowest Component Count, Off-Line Switcher IC for Non-Isolated LED Lighting Applications ] 18 页

POWERINT

LYT0006 元件数最少,离线式开关IC,适用于非隔离LED照明应用[ Lowest Component Count, Off-Line Switcher IC for Non-Isolated LED Lighting Applications ] 18 页

POWERINT

LYT1402D [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1402D-TL [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1403D [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1403D-TL [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1404D-TL [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1602D [ IC LED DRIVER OFFLINE 8SO ] 14 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.164326s