找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

LYT0006

型号:

LYT0006

描述:

元件数最少,离线式开关IC,适用于非隔离LED照明应用[ Lowest Component Count, Off-Line Switcher IC for Non-Isolated LED Lighting Applications ]

品牌:

POWERINT[ Power Integrations ]

页数:

18 页

PDF大小:

2271 K

LYT0002/0004-0006  
LYTSwitch-0 Off-Line Low Power  
LED Driver IC Family  
Lowest Component Count, Off-Line Switcher IC for Non-Isolated  
LED Lighting Applications  
Product Highlights  
•ꢀ High power factor meeting EU and USA requirements  
FB  
BP  
•ꢀ Very low component count  
S
D
•ꢀ Frequency jitter reduces EMI  
•ꢀ No bias supply or transformer required  
LYTSwitch-0  
VIN  
Cost-Effective LED driver  
The LYTSwitch-0 family parts are a highly integrated combination  
of controller, driver and switching power MOSFET that enable low  
component-count, non-isolated switching topologies for highly  
cost competitive LED lighting applications.  
PI-6810-060613  
(a)  
66 kHz operation together with frequency jittering insures a very  
low-cost EMI filter. Less than <50 ms start-up time turn-on  
without overshoot, improves end user experience – no delay.  
FB  
BP  
S
D
+
LYTSwitch-0  
VIN  
Power Factor Correction  
Allows designs that easily meet European and North American  
standards for PFC in consumer lighting applications.  
PI-6819a-060613  
(b)  
Tight CC Performance  
Figure 1. Typical Application Schematic (a) Buck, (b) Buck-Boost.  
Accurate current limit with tight line and load regulation that is  
stable over a wide temperature range makes the LYTSwitch-0  
ideal for LED lighting applications.  
Output Current Table1  
230 VAC ±15%  
85-308 VAC  
Product6  
LYT0002  
LYT0004  
LYT0005  
LYT0006  
PF4,5  
Comprehensive Protection  
MDCM2  
CCM3  
MDCM2  
30 mA  
63 mA  
50 mA  
98 mA  
60 mA  
120 mA  
100 mA  
200 mA  
CCM3  
40 mA  
80 mA  
70 mA  
139 mA  
90 mA  
170 mA  
140 mA  
280 mA  
Integrated auto-restart for short-circuit, open-circuit and open-  
loop faults as well as a high threshold over-temperature  
protection feature (min. 135 °C) with automatic restart provide  
extensive protection at no additional cost.  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
45 mA  
63 mA  
65 mA  
80 mA  
85 mA  
110 mA  
139 mA  
140 mA  
170 mA  
220 mA  
280 mA  
98 mA  
LYTSwitch-0 Supports Different LED Applications  
Flyback, buck, buck-boost and boost architectures are all  
supported by the LYTSwitch-0 family. The 700 V switching power  
MOSFET supports an input voltage range of 85 VAC to 308 VAC.  
100 mA  
120 mA  
165 mA  
200 mA  
Description  
The LYTSwitch-0 family is specifically designed for low cost LED  
bulb replacement applications. LYTSwitch-0 devices integrate a  
700 V power MOSFET, oscillator, simple ON/OFF control scheme,  
a high-voltage switched current source, frequency jittering,  
cycle-by-cycle current limit and thermal shutdown circuitry into a  
monolithic IC.  
Table 1. Output Current Table.  
Notes:  
1. Typical output current in a non-isolated buck converter. See Key Applications  
Considerations section for more information.  
2. MCM – mostly discontinuous mode.  
3. CCM – continuous conduction mode.  
4. PF high: >0.7 @ 120 VAC and >0.5 @ 230 VAC.  
5. PF low: for non-PF application where CIN >5 mF minimum.  
6. Packages: P: PDIP-8B, D: SO-8C.  
The start-up and operating power are derived directly from the  
voltage on the DRAIN pin. This eliminates the need for a bias  
supply and associated circuitry plus allowing low-cost discrete  
inductors to be used. The fully integrated auto-restart circuit in  
the LYTSwitch-0 family safely limits output power during fault  
conditions such as short-circuit or open-loop, reducing component  
count and lower system cost. Package options for thru-hole and  
surface-mount suit different manufacturing requirements.  
SO-8C (D Package)  
PDIP-8B (P Package)  
Figure 2. Package Options.  
www.powerint.com  
June 2013  
LYT0002/0004-0006  
Topology  
Basic Circuit Schematic  
Key Features  
FB  
BP  
S
D
+
High-Side  
Buck –  
Direct  
•ꢀ Output referenced to input  
•ꢀ Positive output (VO) with respect to -VIN  
•ꢀ Step down – VO < VIN  
LYTSwitch-0  
VIN  
Feedback  
•ꢀ Low cost direct feedback ( 5% typ.)  
PI-7043-053113  
•ꢀ Output referenced to input  
•ꢀ Negative output (VO) with respect to +VIN  
•ꢀ Step down – VO < VIN  
PI-7044-060313  
IO  
Low-Side  
Buck –  
Constant  
Current LED  
Driver;  
+
•ꢀ Optocoupler feedback  
•ꢀ Low-cost non-safety rated optocoupler  
•ꢀ Optional Zener provides disconnected load  
protection  
•ꢀ Accuracy determined by VF variation of  
optocoupler LED  
VIN  
VF  
+
Optocoupler  
Feedback  
BP  
D
FB  
S
VF  
R =  
LYTSwitch-0  
IO  
•ꢀ Output referenced to input  
•ꢀ Negative output (VO) with respect to +VIN  
•ꢀ Step up/down – VO > VIN or VO < VIN  
•ꢀ Low-cost direct feedback ( 5% typ.)  
•ꢀ Fail-safe – output is not subjected to input voltage  
if the internal power MOSFET fails  
•ꢀ Ideal for driving LEDs – better accuracy and  
temperature stability than low-side Buck constant  
current LED driver  
High-Side  
Buck-Boost –  
Constant  
Current LED  
Driver  
RSENSE  
FB  
BP  
S
IO  
D
LYTSwitch-0  
VIN  
PI-7045-060313  
+
•ꢀ Output referenced to input  
•ꢀ Positive output (VO) with respect to -VIN  
•ꢀ Step up – VO > VIN  
•ꢀ Low-cost direct feedback ( 5% typ.)  
•ꢀ Ideal for driving high-voltage LEDs string – good  
accuracy and temperature stability  
Low-Side  
Boost –  
Constant  
Current LED  
Driver  
D
S
VIN  
FB  
BP  
LYTSwitch-0  
PI-7046-053113  
•ꢀ Output referenced to input  
+
•ꢀ Positive output (VO) with respect to -VIN  
•ꢀ Step down – VO < VIN  
•ꢀ Low-cost direct feedback ( 5% typ.)  
•ꢀ Fail-safe – output is not subjected to input voltage  
if the internal power MOSFET fails  
Low-Side  
Flyback –  
Constant  
Current LED  
Driver  
D
S
VIN  
FB  
BP  
LYTSwitch-0  
•ꢀ Ideal for driving very low voltage LEDs string –  
•ꢀ good accuracy and temperature stability  
PI-7047-060313  
Table 2.  
Common Circuit Configurations Using LYTSwitch-0 for Driving LEDs.  
2
Rev. A 06/13  
www.powerint.com  
LYT0002/0004-0006  
BYPASS  
(BP)  
DRAIN  
(D)  
REGULATOR  
5.8 V  
BYPASS PIN  
UNDERVOLTAGE  
+
-
5.8 V  
4.85 V  
CURRENT LIMIT  
COMPARATOR  
+
-
6.3 V  
V
ILIMIT  
JITTER  
CLOCK  
DCMAX  
THERMAL  
SHUTDOWN  
FEEDBACK  
(FB)  
OSCILLATOR  
1.65 V -VT  
S
Q
Q
R
LEADING  
EDGE  
BLANKING  
SOURCE  
(S)  
PI-3904-032213  
Figure 3a. Functional Block Diagram LYT0002.  
BYPASS  
(BP)  
DRAIN  
(D)  
REGULATOR  
5.8 V  
FAULT  
PRESENT  
AUTO-  
RESTART  
COUNTER  
BYPASS PIN  
UNDERVOLTAGE  
6.3 V  
+
CLOCK  
5.8 V  
4.85 V  
CURRENT LIMIT  
COMPARATOR  
-
RESET  
+
-
V
ILIMIT  
JITTER  
CLOCK  
DCMAX  
THERMAL  
SHUTDOWN  
FEEDBACK  
(FB)  
OSCILLATOR  
1.65 V -VT  
S
Q
Q
R
LEADING  
EDGE  
BLANKING  
SOURCE  
(S)  
PI-2367-032213  
Figure 3b. Functional Block Diagram LYT0004-0006.  
3
www.powerint.com  
Rev. A 06/13  
LYT0002/0004-0006  
Pin Functional Description  
DRAIN (D) Pin:  
Power MOSFET Drain connection. Provides internal operating  
current for both start-up and steady-state operation.  
and quasi-peak emissions. The frequency jitter should be  
measured with the oscilloscope triggered at the falling edge of  
the Drain waveform. The waveform in Figure 5 illustrates the  
frequency jitter of the LYTSwitch-0.  
BYPASS (BP) Pin:  
Connection point for a 0.1 mF external bypass capacitor for the  
internally generated 5.8 V supply.  
Feedback Input Circuit  
The feedback input circuit at the FEEDBACK pin consists of a  
low impedance source follower output set at 1.65 V. When the  
current delivered into this pin exceeds 49 mA, a low logic level  
(disable) is generated at the output of the feedback circuit. This  
output is sampled at the beginning of each cycle on the rising  
edge of the clock signal. If high, the power MOSFET is turned  
on for that cycle (enabled), otherwise the power MOSFET remains  
off (disabled). Since the sampling is done only at the beginning  
of each cycle, subsequent changes in the FEEDBACK pin  
voltage or current during the remainder of the cycle are ignored.  
FEEDBACK (FB) Pin:  
During normal operation, switching of the power MOSFET is  
controlled by this pin. Power MOSFET switching is terminated  
when a current greater than 49 mA is delivered into this pin.  
SOURCE (S) Pin:  
This pin is the power MOSFET source connection. It is also the  
ground reference for the BYPASS and FEEDBACK pins.  
5.8 V Regulator and 6.3 V Shunt Voltage Clamp  
The 5.8 V regulator charges the bypass capacitor connected to  
the BYPASS pin to 5.8 V by drawing a current from the voltage  
on the DRAIN, whenever the power MOSFET is off. The BYPASS  
pin is the internal supply voltage node for the LYTSwitch-0.  
When the power MOSFET is on, the LYTSwitch-0 runs off of the  
energy stored in the bypass capacitor. Extremely low power  
consumption of the internal circuitry allows the LYTSwitch-0 to  
operate continuously from the current drawn from the DRAIN  
pin. A bypass capacitor value of 0.1 mF is sufficient for both  
high frequency decoupling and energy storage.  
P Package (PDIP-8B)  
D Package (SO-8C)  
S
S
8
7
6
5
S
S
1
2
1
2
8
7
BP  
FB  
S
S
BP  
FB  
S
S
3
4
4
D
5
D
BYPASS Pin Undervoltage  
3b  
3a  
The BYPASS pin undervoltage circuitry disables the power  
MOSFET when the BYPASS pin voltage drops below 4.85 V.  
Once the BYPASS pin voltage drops below 4.85 V, it must rise  
back to 5.8 V to enable (turn-on) the power MOSFET.  
PI-6899-060613  
Figure 4. Pin Configuration.  
Over-Temperature Protection  
LYTSwitch-0 Functional Description  
The thermal shutdown circuitry senses the die temperature.  
The threshold is set at 142 °C typical with a 75 °C hysteresis.  
When the die temperature rises above this threshold (142 °C)  
the power MOSFET is disabled and remains disabled until the  
die temperature falls by 75 °C, at which point it is re-enabled.  
LYTSwitch-0 combines a high-voltage power MOSFET switch  
with a power supply controller in one device. Unlike conventional  
PWM (pulse width modulator) controllers, LYTSwitch-0 uses a  
simple ON/OFF control to regulate the output voltage. The  
LYTSwitch-0 controller consists of an oscillator, feedback (sense  
and logic) circuit, 5.8 V regulator, BYPASS pin undervoltage circuit,  
over-temperature protection, frequency jittering, current limit  
circuit, leading edge blanking and a 700 V power MOSFET. The  
LYTSwitch-0 incorporates additional circuitry for auto-restart.  
Current Limit  
The current limit circuit senses the current in the power  
MOSFET. When this current exceeds the internal threshold  
(ILIMIT), the power MOSFET is turned off for the remainder of that  
cycle. The leading edge blanking circuit inhibits the current limit  
comparator for a short time (tLEB) after the power MOSFET is  
turned on. This leading edge blanking time has been set so  
that current spikes caused by capacitance and rectifier reverse  
recovery time will not cause premature termination of the  
switching pulse cycle.  
Oscillator  
The typical oscillator frequency is internally set to an average of  
66 kHz. Two signals are generated from the oscillator: the  
maximum duty cycle signal (DCMAX) and the clock signal that  
indicates the beginning of each cycle.  
Auto-Restart (LYT0004-0006)  
The LYTSwitch-0 oscillator incorporates circuitry that introduces  
a small amount of frequency jitter, typically 4 kHz peak-to-peak,  
to minimize EMI emission. The modulation rate of the frequency  
jitter is set to 1 kHz to optimize EMI reduction for both average  
In the event of a fault condition such as output overload, output  
short, or an open loop condition, LYTSwitch-0 enters into  
auto-restart operation. An internal counter clocked by the  
oscillator gets reset every time the FEEDBACK pin is pulled  
4
Rev. A 06/13  
www.powerint.com  
LYT0002/0004-0006  
600  
500  
while still meeting conducted EMI limits. Power factor is >0.5  
at 230 VAC and >0.7 PF at 120 VAC meeting requirements for  
LED lamps in Europe and USA.  
VDRAIN  
400  
300  
The input stage comprises fusible resistor RF1, bridge rectifier  
BR1, capacitors C1 and C2, and inductor L1. Resistor RF1 is a  
flame proof, fusible, wire wound resistor. It accomplishes  
several functions: a) Inrush current limitation to below specification  
of BR1; b) Differential mode conducted EMI noise attenuation; c)  
Fuse should any other component fail short-circuit; d) Higher  
power factor. Capacitor C1, C2 and inductor L1 forms a π filter  
to reduce differential mode EMI. Capacitor C2 provides local  
decoupling for the switching current through U1. There is an  
optional parallel resistor on the board across L1 which damps  
the resonance of the pi filter.  
200  
100  
0
68 kHz  
64 kHz  
0
20  
The power processing stage is formed by the integrated  
MOSFET switch within LYT0006 (U1), a free-wheeling diode  
(D1), sense resistor (R2), power inductor (L2) and output  
capacitor (C5). To reduce reverse recovery losses in D1 the  
value of L2 was designed such that the converter operates in  
mostly discontinuous conduction mode. Diode D1 is an  
ultrafast diode with a reverse recovery time (tRR) 35 ns. This  
recovery is recommended due to the high ambient operating  
time temperature which will increase diode reverse recovery  
charge. A bobbin based EE10 core size indictor was selected  
for L2 in order to prevent changes in inductance value when  
placed inside a metal enclosure. Lower cost drum core or dog  
bone inductor types may also be used, however these have an  
open magnetic path which can be shorted by a metal enclosure.  
This reduces the effective inductance and requires the value to  
be adjusted to take this into account when placed inside the  
final enclosure.  
Time (µs)  
Figure 5. Frequency Jitter.  
high. If the FEEDBACK pin is not pulled high for 50 ms, the  
power MOSFET switching is disabled for 800 ms. The auto-  
restart alternately enables and disables the switching of the  
power MOSFET until the fault condition is removed.  
Applications Example  
A 6 W (Output) Universal Input Buck LED Driver Converter  
The circuit shown in Figure 6 is a typical implementation of a  
non-isolated, power factor corrected buck power supply for  
LED driver applications. The simplicity and low component  
count make this ideal for space constrained, cost sensitive  
designs such as GU10 or A19 size lamps. This design was  
optimized to drive an LED string at a voltage of 54 V with a  
constant current of 110 mA, giving 6 W of output power. The  
design operates over a universal input range from 90 VAC to  
265 VAC and achieves an output current tolerance of < ±5%  
at nominal line voltage. The input capacitance (C1 + C2) was  
reduced to achieve the highest possible power factor input  
Capacitor C5 is the output filter capacitor; its primary function is  
to limit the output current ripple and ensures high frequency  
currents flow within as small as a loop area as possible to  
reduce EMI.  
C4  
R1  
C3  
22 µF  
4.7 kΩ  
100 nF  
25 V  
16 V  
FB  
BP  
S
54 V, 110 mA  
5
4
D
BR1  
MB6S  
600 V  
L1  
4.7 mH  
L2  
+
LYTSwitch-0  
U1  
LYT0006P  
RF1  
R2  
4.7 Ω  
L
18.7 Ω  
1%  
C1  
47 nF  
630 V  
C2  
C5  
330 nF  
47 µF  
90 - 265  
VAC  
RV1*  
275 VAC  
450 V  
63 V  
D1  
MURS160T3G  
N
RTN  
PI-6998f-061313  
*Optional <1 kV Surge Requirements  
Figure 6. Universal Input, 54 V, 110 mA Constant Current Power Supply using LYTSwitch-0.  
5
www.powerint.com  
Rev. A 06/13  
LYT0002/0004-0006  
The output current is regulated via the voltage across R2 during  
the free-wheeling period when the internal MOSFET of U1 is off.  
This voltage is filtered by capacitor (C4) and fed into the  
FEEDBACK pin of U1. Regulation is maintained by skipping  
switching cycles. As the output current rises, the voltage on  
the FEEDBACK pin will rise. If this exceeds VFB then subsequent  
cycles will be skipped until the voltage reduces below VFB.  
Component Selection  
Referring to Figure 6, the following considerations may be  
helpful in selecting components for a LYTSwitch-0 design.  
Optional Varistor (RV1)  
The Metal Oxide Varistor (RV1) is used to suppress the line  
surge in order to meet IEC61000-4-5 (differential input line  
1.2/50 ms and differential ring wave input line surge). A MOV is  
recommended for high PF designs with surge levels of 1 kV or  
greater. High PF design requires lower input capacitance values  
giving a greater voltage rise across limited input capacitance  
during surge events. A MOV is typically not required if the  
design will use high-input capacitance (mF’s vs. nF’s) (non-PF  
application).  
Open-loop protection is provided via the auto-restart function.  
If no cycles are skipped during a 50 ms period LYTSwitch-0 will  
enter auto-restart (LYT0004-0006), limiting the average output  
power to approximately 6% of the maximum overload power.  
The auto-restart function requires the value of C3 to be 100 nF  
or greater such that the IC remains operational from half-line  
cycle to half-line cycle.  
Input Capacitance C1 and C2  
Use a film capacitor if the input capacitance is less than 1 mF.  
Make sure that the RMS current rating is not exceeded especially  
if planning to use electrolytic capacitor. For universal or high-  
line only input design use 400 V or 630 V rated capacitors, and  
for low-line only use 250 V rated capacitors for lower cost and  
smaller size.  
For disconnected LED protection an optional Zener (not shown)  
can be placed across the output. This will fuse short-circuit  
and prevent the output voltage rising.  
Key Application Considerations  
LYTSwitch-0 Design Considerations  
Free-wheeling Diode D1  
Output Current Table  
Diode D1 should be an ultrafast type. For MDCM, reverse  
recovery time of ≤75 ns should be used in designs where the  
diode temperature is 70 °C or below. Slower diodes are not  
acceptable, as continuous mode operation will always occur  
during start-up, causing high leading edge current spikes,  
terminating the switching cycle prematurely, and preventing the  
output from reaching regulation. If the diode temperature is  
above 70 °C then a diode with a reverse recovery time of ≤35 ns  
should be used.  
Data sheet maximum output current table (Table 1) represents  
the maximum practical continuous output current for both  
mostly discontinuous conduction mode (MDCM) and continuous  
conduction mode (CCM) of operation that can be delivered  
from a given LYTSwitch-0 device under the following assumed  
conditions:  
1. Buck converter topology.  
2. The minimum DC input voltage is equal to voltage output.  
3. For CCM operation a KRP* of 0.4.  
4. Output voltage of 54 VDC.  
5. Efficiency of 90%.  
6. A catch/free-wheeling diode with tRR 35 ns is used.  
7. The part is board mounted with SOURCE pins soldered to a  
sufficient area of copper to keep the SOURCE pin tempera-  
ture at or below 100 °C.  
For CCM an ultrafast diode with reverse recovery time ≤35 ns  
should be used. Slower diodes cause excessive leading edge  
current spikes, terminating the switching cycle prematurely and  
preventing full power delivery.  
Standard plastic or fast (tRR >75 ns) diodes should never be  
used as the large reverse recovery currents can cause  
excessive power dissipation in the diode and/or exceed the  
maximum drain current specification of LYTSwitch-0.  
*KRP is the ratio of ripple to peak inductor current.  
LYTSwitch-0 Selection and Selection Between  
MDCM and CCM Operation  
Inductor L1  
Select the LYTSwitch-0 device, free-wheeling diode and output  
inductor that gives the lowest overall cost. In general, MDCM  
provides the lowest cost and highest efficiency converter. CCM  
designs require a larger inductor and ultrafast (tRR 35 ns)  
free-wheeling diode in all cases. It is lower cost to use a larger  
LYTSwitch-0 in MDCM than a smaller LinkSwitch-0 in CCM  
because of the additional external component costs of a CCM  
design. However, if the highest output current is required, CCM  
should be employed following the guidelines below.  
Choose any standard off-the-shelf inductor that meets the  
design requirements. A “drum” or “dog bone” “I” core inductor  
is recommended with a single ferrite element due to its low-cost  
and very low audible noise properties. The typical inductance  
value and RMS current rating can be obtained from the  
LYTSwitch-0 PIXls design spreadsheet. The PIXls application is  
part of the PI Expert design suite available for free download  
from Power Integrations. Choose L1 greater than or equal to  
the typical calculated inductance.  
Topology Options  
Note that the open magnetic path of non-shielded discrete  
inductors may cause inductance value changes when placed  
within metal enclosure requiring a larger value to be used.  
LYTSwitch-0 can be used in all common topologies, with or  
without an optocoupler and reference to improve output voltage  
tolerance and regulation. Table 2 provide a summary of these  
configurations.  
6
Rev. A 06/13  
www.powerint.com  
LYT0002/0004-0006  
Output Capacitor C5  
Feedback Capacitor C4  
The primary function of capacitor C5 is to smooth the inductor  
current. Select a low or ultra-low ESR series if electrolytic types  
are used to ensure capacitor heating is minimized. Ceramic or  
solid polymer types are also suitable but are typically higher  
cost per unit capacitance.  
Capacitor C4 can be a low-cost general purpose capacitor. It  
provides a “sample and hold” function, charging to the sensed  
current value during the off-time of LYTSwitch-0. Its value  
should be 10 mF to 22 mF; smaller values cause poorer regulation  
and lower efficiency. This capacitor also bypasses the switching  
current during the free-wheeling period, reducing the sense  
resistor dissipation.  
Select the voltage rating to be the nearest above the LED string  
voltage. Select the initial capacitance value based on the ripple  
current parameter calculated in the design spreadsheet. The  
capacitance value may be further increased to reduce the LED  
ripple current dependent on the specification requirements of  
the driver. For long life use 105 °C or above rated parts unless  
the ambient temperature inside the lamp is less than 80 °C and  
select a series with an appropriate lifetime rating. Note that  
operating electrolytic capacitors below their rated temperature  
specification will significantly extend their lifetime e.g., 105 °C  
capacitor operated at 80 °C will increase lifetime by a factor of  
2 to 3.  
LYTSwitch-0 Layout Considerations  
In the buck or buck-boost converter configuration, since the  
SOURCE pins in LYTSwitch-0 are switching nodes, the copper  
area connected to SOURCE should be minimized to minimize  
EMI within the thermal constraints of the design.  
In the boost and non-isolated flyback configuration, since the  
SOURCE pins are tied to DC return, the copper area connected  
to SOURCE can be maximized to improve heat sinking.  
The loop formed between the LYTSwitch-0, inductor (L2),  
free-wheeling diode (D1), and output capacitor (C5) should be  
kept as small as possible. The BYPASS pin capacitor C3  
(Figure 7a) should be located physically close to the SOURCE (S)  
and BYPASS (BP) pins. To minimize direct coupling from  
Sense Resistor R2  
Sense resistor should be a 1% tolerance and either pulse rated  
or overdesigned to avoid resistance drift with time. If using a  
standard metal film type, overdesign power rating by 2-4 times.  
The value of the resistor is provided in the design spreadsheet.  
U1  
C4  
R3  
C3  
D
FB  
BP  
S
D1  
R2  
S
S
S
AC  
INPUT  
~
~
+
DC  
OUTPUT  
BR1  
+
Optimize hatched copper areas (  
) for heat sinking.  
PI-7033-052913  
Figure 7a. Recommended Printed Circuit Layout for LYTSwitch-0 in a Buck Converter Configuration using P Package.  
7
www.powerint.com  
Rev. A 06/13  
LYT0002/0004-0006  
U1  
+
D
S
S
S
S
FB  
BP  
DC  
OUTPUT  
AC  
INPUT  
C3  
~
+
L2  
~
Optimize hatched copper areas (  
) for heat sinking.  
PI-7032-061313  
Figure 7b. Recommended Printed Circuit Layout for LYTSwitch-0 in a Buck Converter Configuration using D Package to Bottom Side of the Board.  
switching nodes, the LYTSwitch-0 should be placed away from  
AC input lines. It may be advantageous to place capacitors C1  
and C2 in-between LYTSwitch-0 and the AC input.  
RDS(ON) from part to part. A battery powered thermocouple  
meter is recommended to make measurements when the  
SOURCE pins are a switching node. Alternatively, the  
ambient temperature may be raised to indicate margin to  
thermal shutdown.  
Quick Design Checklist  
4. Check for any presence of reverse current in the DRIAN pin  
during start-up with the output capacitance fully discharged.  
Presence of reverse current is possible for CCM (high-power  
inductance >3 mH) at certain conditions for limited input  
capacitance (VOUT = VBULK_MIN every input half-line AC cycle).  
Using a current probe, check if negative current is measured  
either by increase input capacitance, reduce inductance or  
place an ultrafast diode in series with the Drain node.  
5. Follow the design procedure in AN-60 for the optimum line  
regulation.  
As with any power supply design, all LYTSwitch-0 designs  
should be verified for proper functionality on the bench. The  
following minimum tests are recommended:  
1. Correct diode selection – UF400x series diodes are  
recommended only for designs that operate in MDCM at an  
ambient of 70 °C or below. For designs operating in  
continuous conduction mode (CCM) and/or higher ambient,  
then a diode with a reverse recovery time of 35 ns or better,  
such as the BYV26C, is recommended.  
2. Maximum drain current – Verify that the peak drain current is  
below the data sheet peak drain specification under  
worst-case conditions of highest line voltage, maximum  
overload (just prior to auto-restart) and highest ambient  
temperature.  
3. Thermal check – At maximum output power, minimum input  
voltage and maximum ambient temperature, verify that the  
LYTSwitch-0 SOURCE pin temperature is 110 °C or below.  
This figure ensures adequate margin due to variations in  
6. Power factor can be optimized by adjusting the conduction  
time of the bridge rectifier. Refer to AN-60 for more details.  
In a LYTSwitch-0 design using a buck or buck-boost converter  
topology, the SOURCE pin is a switching node. Oscilloscope  
measurements should therefore be made with probe grounded  
to a DC voltage, such as primary return or DC input rail, and not  
to the SOURCE pins. The power supply input must always be  
supplied from an isolated source (e.g. via an isolation transformer).  
8
Rev. A 06/13  
www.powerint.com  
LYT0002/0004-0006  
Absolute Maximum Ratings(1,5)  
DRAIN Pin Voltage..............................................-0.3 V to 700 V Notes:  
Peak DRAIN Pin Current (LYT0002) .............. 200 mA (375 mA)(2) 1. All voltages referenced to SOURCE, TA = 25 °C.  
Peak DRAIN Pin Current (LYT0004) .............. 400 mA (750 mA)(2) 2. The higher peak DRAIN current is allowed if the DRAIN  
Peak DRAIN Pin Current (LYT0005) ............ 800 mA (1500 mA)(2)  
to SOURCE voltage does not exceed 400 V.  
Peak DRAIN Pin Current (LYT0006) .......... 1400 mA (2600 mA)(2) 3. Normally limited by internal circuitry.  
FEEDBACK Pin Voltage..........................................-0.3 V to 9 V 4. 1/16 in. from case for 5 seconds.  
FEEDBACK Pin Current................................................. 100 mA 5. Maximum ratings specified may be applied, one at a time,  
BYPASS Pin Voltage...............................................-0.3 V to 9 V  
Storage Temperature...................................... -65 °C to 150 °C  
Operating Junction Temperature(3)................... -40 °C to 150 °C  
Lead Temperature(4) .........................................................260 °C  
without causing permanent damage to the product.  
Exposure to Absolute Maximum Rating conditions for  
extended periods of time may affect product reliability.  
Thermal Resistance  
Thermal Resistance: P Package:  
Notes:  
(qJA) ................................70 °C/W(3); 60 °C/W(4) 1. Measured on pin 2 (SOURCE) close to plastic interface.  
(qJC)(1) .................................................11 °C/W 2. Measured on pin 8 (SOURCE) close to plastic interface.  
D Package:  
3. Soldered to 0.36 sq. in. (232 mm2), 2 oz. (610 g/m2) copper clad.  
(qJA) ..............................100 °C/W(3); 80 °C/W(4) 4. Soldered to 1 sq. in. (645 mm2), 2 oz. (610 g/m2) copper clad.  
(qJC)(2) .................................................30 °C/W  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
See Figure 8  
(Unless Otherwise Specified)  
Control Functions  
Average  
62  
66  
4
70  
Output  
Frequency  
fOSC  
DCMAX  
IFB  
TJ = 25 °C  
kHz  
%
Peak-Peak Jitter  
Maximum Duty Cycle  
S2 Open  
66  
30  
69  
72  
68  
FEEDBACK Pin Turnoff  
Threshold Current  
TJ = 25 °C  
49  
mA  
FEEDBACK Pin Voltage  
at Turnoff Threshold  
VFB  
1.54  
1.65  
130  
1.76  
220  
V
VFB ≥2 V  
(MOSFET Not Switching)  
See Note A  
IS1  
mA  
LYT0002  
165  
173  
190  
226  
260  
280  
310  
330  
DRAIN Pin  
Supply Current  
FEEDBACK Open  
(MOSFET  
Switching)  
See Notes A, B  
LYT0004  
LYT0005  
LYT0006  
IS2  
mA  
9
www.powerint.com  
Rev. A 06/13  
LYT0002/0004-0006  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
See Figure 8  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
Control Functions (cont.)  
VBP = 0 V  
TJ = 25 °C  
See Note C  
LYT0002/0004  
LYT0005-0006  
LYT0002/0004  
LYT0005-0006  
-5.5  
-7.5  
-3.8  
-4.5  
-3.35  
-4.6  
-2.3  
-3.3  
-1.8  
-2.5  
-1.0  
-1.5  
ICH1  
BYPASS Pin  
Charge Current  
mA  
VBP = 4 V  
TJ = 25 °C  
See Note C  
ICH2  
BYPASS Pin  
Voltage  
VBP  
VBPH  
IBPSC  
5.55  
0.8  
68  
5.8  
6.10  
1.2  
V
V
BYPASS Pin  
Voltage Hysteresis  
0.95  
BYPASS Pin  
Supply Current  
See Note D  
mA  
Circuit Protection  
di/dt = 55 mA/ms  
TJ = 25 °C  
126  
145  
195  
222  
240  
271  
350  
396  
136  
165  
210  
265  
257  
310  
375  
450  
146  
185  
225  
282  
275  
345  
401  
504  
LYT0002  
LYT0004  
LYT0005  
LYT0006  
di/dt = 250 mA/ms  
TJ = 25 °C  
di/dt = 65 mA/ms  
TJ = 25 °C  
di/dt = 415 mA/ms  
TJ = 25 °C  
ILIMIT  
(See Note E)  
Current Limit  
mA  
di/dt = 75 mA/ms  
TJ = 25 °C  
di/dt = 500 mA/ms  
TJ = 25 °C  
di/dt = 95 mA/ms  
TJ = 25 °C  
di/dt = 610 mA/ms  
TJ = 25 °C  
LYT0002/0004  
LYT0005  
280  
360  
400  
360  
460  
500  
475  
610  
675  
Minimum On Time  
tON(MIN)  
ns  
LYT0006  
Leading Edge  
Blanking Time  
TJ = 25 °C  
See Note F  
tLEB  
170  
135  
215  
142  
75  
ns  
°C  
°C  
Thermal Shutdown  
Temperature  
TSD  
150  
Thermal Shutdown  
Hysteresis  
TSHD  
See Note G  
10  
Rev. A 06/13  
www.powerint.com  
LYT0002/0004-0006  
Conditions  
SOURCE = 0 V; TJ = -40 to 125 °C  
See Figure 8  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
(Unless Otherwise Specified)  
Output  
TJ = 25 °C  
42  
67  
21  
40  
11  
19  
6
55.2  
88.4  
27.6  
44.2  
13.8  
22.1  
8.1  
LYT0002  
ID = 13 mA  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
LYT0004  
ID = 25 mA  
ON-State  
Resistance  
RDS(ON)  
W
LYT0005  
ID = 35 mA  
LYT0006  
ID = 45 mA  
11  
12.9  
50  
LYT0002  
LYT0004  
LYT0005  
LYT0006  
VBP = 6.2 V,  
VFB ≥2 V,  
VDS = 560 V,  
TJ = 25 °C  
60  
OFF-State Drain  
Leakage Current  
IDSS  
mA  
75  
90  
VBP = 6.2 V, VFB ≥2 V,  
Breakdown Voltage  
BVDSS  
700  
50  
V
TJ = 25 °C  
tR  
tF  
Rise Time  
50  
50  
ns  
ns  
V
Measured in a Typical Buck  
Converter Application  
Fall Time  
DRAIN Supply Voltage  
Output Enable Delay  
tEN  
See Figure 10  
10  
ms  
Output Disable  
Setup Time  
tDST  
0.5  
ms  
ms  
%
Not Applicable  
LYT0002  
Auto-Restart  
ON-Time  
TJ = 25 °C  
See Note H  
tAR  
LYT0004-0006  
50  
Not Applicable  
LYT0002  
Auto-Restart  
Duty Cycle  
DCAR  
LYT0004-0006  
6
NOTES:  
A. Total current consumption is the sum of IS1 and IDSS when FEEDBACK pin voltage is ≥2 V (MOSFET not switching) and the sum of  
IS2 and IDSS when FEEDBACK pin is shorted to SOURCE (MOSFET switching).  
B
Since the output power MOSFET is switching, it is difficult to isolate the switching current from the supply current at the DRAIN.  
An alternative is to measure the BYPASS pin current at 6 V.  
C. See Typical Performance Characteristics section Figure 15 for BYPASS pin start-up charging waveform.  
D. This current is only intended to supply an optional optocoupler connected between the BYPASS and FEEDBACK pins and not  
any other external circuitry.  
E. For current limit at other di/dt values, refer to Figure 14.  
F. This parameter is guaranteed by design.  
G. This parameter is derived from characterization.  
H. Auto-restart on time has the same temperature characteristics as the oscillator (inversely proportional to frequency).  
11  
www.powerint.com  
Rev. A 06/13  
LYT0002/0004-0006  
470  
5 W  
470 kΩ  
0.1 µF  
FB  
BP  
D
S2  
S1  
50 V  
50 V  
S
S
S
S
PI-3490-060204  
Figure 8. LYTSwitch-0 General Test Circuit.  
DC  
(internal signal)  
MAX  
t
P
FB  
t
EN  
V
DRAIN  
1
tP  
=
fOSC  
PI-3707-112503  
Figure 10. LYTSwitch-0 Output Enable Timing.  
Figure 9.  
LYTSwitch-0 Duty Cycle Measurement.  
12  
Rev. A 06/13  
www.powerint.com  
LYT0002/0004-0006  
Typical Performance Characteristics  
1.1  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.0  
0
0.9  
-50 -25  
0
25  
50 75 100 125  
-50 -25  
0
25 50 75 100 125 150  
C)  
Junction Temperature (°C)  
Junction Temperature (  
°
Figure 12. Frequency vs. Temperature.  
Figure 11. Breakdown vs. Temperature.  
1.4  
1.2  
1.0  
0.8  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
Normalized  
Limit = 1  
Normalized di/dt  
Normalized Current  
di/dt = 1  
di/dt = 1  
di/dt = 6  
0.6  
0.4  
0.2  
0
LYT0002  
LYT0004  
LYT0005  
LYT0006  
55 mA/µs  
65 mA/µs  
75 mA/µs  
95 mA/µs  
136 mA  
210 mA  
257 mA  
450 mA  
-50  
0
50  
100  
150  
1
2
3
4
5
6
Temperature (°C)  
Normalized di/dt  
Figure 13. Current Limit vs. Temperature at Normalized di/dt.  
Figure 14. Current Limit vs. di/dt.  
7
6
5
400  
350  
25 °C  
300  
100 °C  
250  
200  
150  
100  
50  
4
3
2
1
Scaling Factors:  
LYT0002 0.5  
LYT0004 1.0  
LYT0005 2.0  
LYT0006 3.4  
0
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
2
4
6
8
10 12 14 16 18 20  
Time (ms)  
Drain Voltage (V)  
Figure 15. BYPASS Pin Start-up Waveform.  
Figure 16. Output Characteristics.  
13  
www.powerint.com  
Rev. A 06/13  
LYT0002/0004-0006  
Typical Performance Characteristics (cont.)  
1000  
100  
10  
Scaling Factors:  
LYT0002 0.5  
LYT0004 1.0  
LYT0005 2.0  
LYT0006 3.4  
1
0
100 200 300 400 500 600  
Drain Voltage (V)  
Figure 17. COSS vs. Drain Voltage.  
14  
Rev. A 06/13  
www.powerint.com  
LYT0002/0004-0006  
PDIP-8B (P Package)  
D S .004 (.10)  
Notes:  
.137 (3.48)  
MINIMUM  
1. Package dimensions conform to JEDEC specification  
MS-001-AB (Issue B 7/85) for standard dual-in-line (DIP)  
package with .300 inch row spacing.  
-E-  
2. Controlling dimensions are inches. Millimeter sizes are  
shown in parentheses.  
3. Dimensions shown do not include mold flash or other  
protrusions. Mold flash or protrusions shall not exceed  
.006 (.15) on any side.  
.240 (6.10)  
.260 (6.60)  
4. Pin locations start with Pin 1, and continue counter-clock-  
wise to Pin 8 when viewed from the top. The notch and/or  
dimple are aids in locating Pin 1. Pin 6 is omitted.  
5. Minimum metal to metal spacing at the package body for  
the omitted lead location is .137 inch (3.48 mm).  
6. Lead width measured at package body.  
Pin 1  
-D-  
7. Lead spacing measured with the leads constrained to be  
perpendicular to plane T.  
.367 (9.32)  
.387 (9.83)  
.057 (1.45)  
.068 (1.73)  
(NOTE 6)  
.125 (3.18)  
.145 (3.68)  
.015 (.38)  
MINIMUM  
-T-  
SEATING  
PLANE  
.008 (.20)  
.015 (.38)  
.120 (3.05)  
.140 (3.56)  
.300 (7.62) BSC  
(NOTE 7)  
.100 (2.54) BSC  
.048 (1.22)  
.053 (1.35)  
P08B  
.300 (7.62)  
.390 (9.91)  
.014 (.36)  
.022 (.56)  
T E D S .010 (.25) M  
PI-2551-040110  
15  
www.powerint.com  
Rev. A 06/13  
LYT0002/0004-0006  
SO-8C (D Package)  
0.10 (0.004)  
A-B  
2X  
C
2
DETAIL A  
B
4
4.90 (0.193) BSC  
A
4
D
8
5
GAUGE  
PLANE  
SEATING  
PLANE  
3.90 (0.154) BSC  
6.00 (0.236) BSC  
2
0 - 8o  
C
0.25 (0.010)  
BSC  
1.04 (0.041) REF  
0.10 (0.004)  
C D  
0.40 (0.016)  
1.27 (0.050)  
2X  
1
4
Pin 1 ID  
0.20 (0.008) C  
2X  
7X 0.31 - 0.51 (0.012 - 0.020)  
1.27 (0.050) BSC  
0.25 (0.010)  
M
C A-B D  
1.35 (0.053)  
1.75 (0.069)  
1.25 - 1.65  
(0.049 - 0.065)  
DETAIL A  
H
0.10 (0.004)  
0.25 (0.010)  
0.10 (0.004)  
C
7X  
SEATING PLANE  
0.17 (0.007)  
0.25 (0.010)  
C
Reference  
Solder Pad  
Dimensions  
+
Notes:  
1. JEDEC reference: MS-012.  
2. Package outline exclusive of mold flash and metal burr.  
3. Package outline inclusive of plating thickness.  
4. Datums A and B to be determined at datum plane H.  
2.00 (0.079)  
4.90 (0.193)  
5. Controlling dimensions are in millimeters. Inch dimensions  
+
+
+
are shown in parenthesis. Angles in degrees.  
1.27 (0.050)  
0.60 (0.024)  
D07C  
PI-4526-040110  
Part Ordering Information  
LYTSwitch-0 Product Family  
LYT Series Number  
Package Identifier  
Plastic PDIP-8B  
Plastic SO-8C  
P
D
Tape & Reel and Other Options  
Standard Configurations  
Blank  
Tape & Reel, 2.5 k pcs minimum for D Package.  
Not available for P Package.  
TL  
LYT 0002 D - TL  
16  
Rev. A 06/13  
www.powerint.com  
LYT0002/0004-0006  
17  
www.powerint.com  
Rev. A 06/13  
Revision  
Notes  
Date  
A
Initial Release  
06/13  
For the latest updates, visit our website: www.powerint.com  
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power  
Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES  
NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.  
Patent Information  
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered  
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A  
complete list of Power Integrations patents may be found at www.powerint.com. Power Integrations grants its customers a license under  
certain patent rights as set forth at http://www.powerint.com/ip.htm.  
Life Support Policy  
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR  
SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:  
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii)  
whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant  
injury or death to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or effectiveness.  
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS,  
HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc.  
Other trademarks are property of their respective companies. ©2013, Power Integrations, Inc.  
Power Integrations Worldwide Sales Support Locations  
World Headquarters  
Germany  
Japan  
Taiwan  
5245 Hellyer Avenue  
Lindwurmstrasse 114  
80337 Munich  
Germany  
Phone: +49-895-527-39110  
Fax: +49-895-527-39200  
e-mail: eurosales@powerint.com Phone: +81-45-471-1021  
Fax: +81-45-471-3717  
Kosei Dai-3 Bldg.  
2-12-11, Shin-Yokohama,  
Kohoku-ku  
Yokohama-shi Kanagwan  
222-0033 Japan  
5F, No. 318, Nei Hu Rd., Sec. 1  
Nei Hu Dist.  
Taipei 11493, Taiwan R.O.C.  
Phone: +886-2-2659-4570  
Fax: +886-2-2659-4550  
e-mail: taiwansales@powerint.com  
San Jose, CA 95138, USA.  
Main: +1-408-414-9200  
Customer Service:  
Phone: +1-408-414-9665  
Fax: +1-408-414-9765  
e-mail: usasales@powerint.com  
India  
e-mail: japansales@powerint.com Europe HQ  
China (Shanghai)  
Rm 1601/1610, Tower 1,  
Kerry Everbright City  
No. 218 Tianmu Road West,  
Shanghai, P.R.C. 200070  
Phone: +86-21-6354-6323  
Fax: +86-21-6354-6325  
#1, 14th Main Road  
Vasanthanagar  
Bangalore-560052 India  
Phone: +91-80-4113-8020  
Fax: +91-80-4113-8023  
e-mail: indiasales@powerint.com Seoul, 135-728, Korea  
Phone: +82-2-2016-6610  
1st Floor, St. Jamess House  
East Street, Farnham  
Surrey GU9 7TJ  
Korea  
RM 602, 6FL  
Korea City Air Terminal B/D, 159-6 United Kingdom  
Samsung-Dong, Kangnam-Gu, Phone: +44 (0) 1252-730-141  
Fax: +44 (0) 1252-727-689  
e-mail: eurosales@powerint.com  
e-mail: chinasales@powerint.com Italy  
Via Milanese 20, 3rd. Fl.  
Fax: +82-2-2016-6630  
e-mail: koreasales@powerint.com Applications Hotline  
World Wide +1-408-414-9660  
China (ShenZhen)  
20099 Sesto San Giovanni (MI)  
Italy  
3rd Floor, Block A,  
Singapore  
Zhongtou International Business Phone: +39-024-550-8701  
Center, No. 1061, Xiang Mei Rd, Fax: +39-028-928-6009  
51 Newton Road  
#19-01/05 Goldhill Plaza  
Applications Fax  
World Wide +1-408-414-9760  
FuTian District, ShenZhen,  
China, 518040  
Phone: +86-755-8379-3243  
Fax: +86-755-8379-5828  
e-mail: chinasales@powerint.com  
e-mail: eurosales@powerint.com Singapore, 308900  
Phone: +65-6358-2160  
Fax: +65-6358-2015  
e-mail: singaporesales@powerint.com  
厂商 型号 描述 页数 下载

POWERINT

LYT0002 元件数最少,离线式开关IC,适用于非隔离LED照明应用[ Lowest Component Count, Off-Line Switcher IC for Non-Isolated LED Lighting Applications ] 18 页

POWERINT

LYT0004 元件数最少,离线式开关IC,适用于非隔离LED照明应用[ Lowest Component Count, Off-Line Switcher IC for Non-Isolated LED Lighting Applications ] 18 页

POWERINT

LYT0005 元件数最少,离线式开关IC,适用于非隔离LED照明应用[ Lowest Component Count, Off-Line Switcher IC for Non-Isolated LED Lighting Applications ] 18 页

POWERINT

LYT1402D [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1402D-TL [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1403D [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1403D-TL [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1404D [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1404D-TL [ IC LED DRIVER OFFLINE 8SO ] 14 页

POWERINT

LYT1602D [ IC LED DRIVER OFFLINE 8SO ] 14 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.186522s