找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

VTX1100

型号:

VTX1100

品牌:

MICROSEMI[ Microsemi ]

页数:

34 页

PDF大小:

282 K

“Preparing Networks for Convergence”  
Advanced Datasheet  
VTX1100  
PacMON VTX1100  
8+1-port HomePNA PACKET CONCENTRATOR  
1 Features  
§
8 1/10Mbps Serial ports direct interface with § Supports both Full/Half duplex ports  
Home PNA PHY or 8 10/100Mbps RMII  
ports  
Ideal for MDU (Multiple Dwelling Unit)  
application with Home PNA PHY  
§
§
Full wirespeed layer 2 switching on all ports  
Ability to support WinSock2.0 and  
Windows98 & Windows2000 smart  
applications  
§
§
§
§
1 10/100Mbps auto-negotiating MII/serial § Transmit delay control capabilities  
port (port 8) that can be used as uplink port  
Up to 8 port-based VLANs can be configured  
from EEPROM  
Provides maximum delay guarantee  
(<1ms)(Last bit in to first bit out)  
Supports mixed voice-data networks  
Internal 1k MAC address table  
§
§
Support Concentrator mode  
Auto address learning  
Auto address aging  
Ports 0 & 1 can be trunked to provide a  
2x1/10Mbps link to another switch or server  
Utilizes a single low-cost external SSRAM  
for buffer memory  
§
Leading edge QoS capabilities provided  
based on 802.1p and IP TOS/DS field  
§
2 queues per output port  
Packet scheduling based on Weighted  
Round-Robin (WRR)  
Weighted Random Early Detection/Drop  
(WRED) to drop packets during traffic  
congestion  
256k bytes or 512k bytes (1 chip)  
§
§
External I2C EEPROM for power-up  
configuration  
Support external parallel port for  
configuration updates  
Optimized pin-out for easy board layout  
Packaged in a 208 PQFP  
§
§
2 levels of packet drop provided  
System Block Diagram  
10Mbps  
Serial  
Interface  
S
S
R
A
M
10/100  
MII  
VTX1100  
Switch Chip  
1-Port MII 10/100  
S
S
R
A
M
CPU  
VTX1100  
Switch Chip  
1-Port MII 10/100  
8-port 10MB Serial  
8-port 10/100MB RMII  
VTX1100  
10/100  
MII  
10/100MB  
RMII  
Interface  
To WAN  
Port  
1MB  
Serial  
Interface  
10/100  
RMII  
PHY  
10/100  
RMII  
PHY  
Home  
PNA  
PHY  
Home  
PNA  
PHY  
64+1 Port Switch  
MDU System  
8+1 Port Switch  
Line Card  
VERTEX NETWORKS, INC.  
1
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
System Block Diagram  
10/100  
MII  
S
S
S
R
A
10/100  
MII  
VTX1100  
Switch Chip  
1-Port MII 10/100  
8-port 10MB Serial  
VTX1100  
Switch Chip  
1-Port MII 10/100  
8-port 10MB Serial  
10/100  
RMII  
S
R
A
PAL  
XF2080  
M
M
XF2020  
Routing Switch  
4-16 10/100 Ports  
or  
Switch  
24 10/100 Ports  
+
10MB  
Serial  
Interface  
10MB  
Serial  
Interface  
2 G UPlinks  
8-48 10MB ports  
Home  
PNA  
PHY  
Home  
PNA  
PHY  
Home  
PNA  
PHY  
Home  
PNA  
PHY  
Line Card  
Line Card  
High Port Density  
MDU System  
VERTEX NETWORKS, INC.  
2
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
2 Description  
The Packet Monster (PacMON) VTX1100 is a fully integrated 8-port Ethernet packet concentrator  
designed to support Home Networking. It is ideal for Multiple Dwelling Units (MDU) application.  
PacMON VTX1100 provides features, normally not associated with plug-and-play technology,  
without requiring an external processor to facilitate their utilization.  
PacMON VTX1100 begin operating immediately at power-up, learning addresses automatically, and  
forwarding packets at full wire-speed to any of its eight output ports or the uplink expansion port. At  
power-up, VTX1100 configures itself from the EEPROM, and can then provide port trunking, port-  
based VLANs, and Quality of Service (QoS) capabilities, usually associated only with managed  
switches.  
The proprietary built-in intelligence of the VTX1100 allows it to recognize and offer packet  
prioritization QoS. Packets are prioritized based on their layer 2 VLAN priority tag or layer 3 Type-  
Of-Service/ Differentiated Services (TOS/DS) field. This priority can be defined as transmit and/or  
drop priority.  
The PacMON VTX1100 can be used to create an 8-port unmanaged switch with one WAN router port  
by adding a CPU (ARM or MPC 850) connected to the additional MII port (port 8). The only external  
components needed for a low cost MDU system are the Home PNA physical layer transceivers and a  
single SSRAM per VTX1100.  
Operating at 50Mhz internally, and with a 50Mhz interface to the external SSRAM, the VTX1100  
sustains full wire-speed switching on all nine ports. When the system supports 8 ports of 1M Home  
PNA PHY with the 10M Serial uplink, the system clock can be operated to 20Mhz and still achieve  
full wire speed switching on all nine ports.  
The chip is packaged in a small 208 pin Plastic Quad Flat-Pak (PQFP) package.  
VERTEX NETWORKS, INC.  
3
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
3 PacMON VTX1100 Block Diagram  
I 2 C Interface  
Registers  
Mgmt  
Xface  
MDIO  
Xface  
Switch  
Control  
Memory  
1k  
Search Engine  
SRAM  
SSRAM  
Frame Engine  
Frame  
Frame  
32  
Memory  
Buffer  
Interface  
Memory  
Eight  
1/10 Serial  
or  
Expansion  
Port MAC  
10/100 RMII  
MACs  
7 wire Serial  
interface  
MII/Serial Port  
VERTEX NETWORKS, INC.  
4
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
4 Functional Operation  
The PacMON VTX1100 was designed to provide a cost-effective layer 2 switching solution, using  
technology from the XF2080 family to offer a highly integrated product for the unmanaged, DiffServ  
ready, Ethernet switching market.  
Eight 1/10 Media Access Controllers (MAC) provide the protocol interface into the VTX1100. These  
MACs perform the required packet checks to ensure that each packet provided to the Frame Engine  
meets all the IEEE 802.1 standards. Data packets longer than 1518 (1522 with VLAN tag) bytes  
and shorter than 64 bytes are dropped, and VTX1100 has been designed to support minimum inter-  
frame gaps between incoming packets.  
The Frame Engine (FE) is the primary packet buffering and forwarding engine within the VTX1100.  
As such, the FE controls the storage of packets in and out of the external frame buffer memory,  
keeps track of frame buffer availability, and schedules output packet transmissions. While packet  
data is being buffered, the FE extracts the necessary information from each packet header and sends  
it to the Search Engine for processing. Search results returned to the FE ensue the scheduling of  
packet transmission and prioritization. When a packet is chosen for transmission, the FE reads the  
packet from external buffer memory and places it in the output FIFO of the output port.  
5 Address Learning and Aging  
The PacMON VTX1100 is able to begin address learning and packet forwarding shortly after power-  
up has been completed. The Search Engine examines the contents of its internal Switch Database  
Memory for each valid packet received on an input port.  
Unknown source and destination MAC addresses are detected when the Search Engine does not find  
a match within its database. These unknown source MAC addresses are learned by creating a new  
entry in the switch database memory, and storing the necessary resulting information in that  
location. Subsequent searches to a learned destination MAC address will return the new contents of  
that MAC Control Table (MCT) entry.  
After each source address search the MCT entry aging flag is updated. MCT entries that have not  
been accessed during a user configurable time period (2 to 67,108 seconds) will be removed. This  
aging time period can be configured using the 16-bit value stored in the registers MAC Address  
Aging Time Low and High (MATL[7:0], MATH[7:0]). The aging period is defined by the following  
equation:  
{MATH[7:0]&MATL[7:0]} x 1024ms = Tage  
The aging of all MCT entries is checked once during each time period. If the MCT entry has not been  
utilized before the end of the next time period, it will be deleted.  
Note that when the system clock operates at 20Mhz, the aging period will be increased, compared  
with 50Mhz of system clock. One should adjust the MATH and MATHL content variable accordingly.  
VERTEX NETWORKS, INC.  
5
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
6 Quality of Service  
The PacMON VTX1100 utilizes Vertex Networks’ CoSMOS architecture that provides a new level of  
Quality of Service (QoS) capability to unmanaged switch applications. Similar in operation to the  
QoS capabilities of the XF2080 chipset members, VTX1100 provides two transmit queues per output  
port.  
The Frame Engine manages the output transmission queues for all the VTX1100 ports. Once the  
destination address search is complete, and the switch decision is passed back to the FE, the packet  
is inserted into the appropriate output queue. The packet entry into the high or low priority queue is  
controlled by either the VLAN tag information or the Type of Service/Differentiated Service  
(TOS/DS) field in the IP header. Either of these priority fields can be used to select the transmission  
priority, and the mapping of the priority field values into either the high or low priority queue can be  
configured using the VTX1100 configuration registers.  
If the system uses the TOS/DS field to prioritize packets, there are two choices regarding which bits  
of the TOS/DS field are used. Bits [0:2] of the TOS byte (known as the IP precedence field) or bits  
[3:5] of the TOS byte (known as the DRT field) can be used to map the transmission queue priority.  
Either bits, [0:2] or [3:5], can also be used as a packet drop precedence, by using bits 6 and 7 of the  
FCB Buffer Low Threshold register (FCBST).  
VTX1100 utilizes Weighted Round Robin (WRR) and Weighted Random Early Detection/Drop  
(WRED) to schedule packets for transmission. To enable VTX1100’s QoS capabilities requires the  
use of an external EEPROM to change the default register configurations and turn on QoS.  
Weighted Round Robin is an efficient method to ensure that each of the transmission queues gets at  
least a minimum service level. With two output transmission queues, VTX1100 will transmit “X”  
packets from the high priority queue before transmitting “Y” packets from the low priority queue.  
VTX1100 allows the designer to set the high priority weight to a value between 0 and 16. The low  
priority weight is fixed at the value 1. If the high priority weight is set to the value 4, then it will  
transmit 4 high priority packets before transmitting each low priority packet.  
VTX1100 also uses a proprietary mechanism to ensure the timely delivery of high priority packets.  
When the latency of high priority packets reaches a threshold, it will override the WRR weights and  
transmit only high priority packets until the high priority packet delays are below the threshold.  
This threshold limit is set at less than 1ms (last bit in and first bit out).  
The QoS capabilities of the VTX1100 are enabled by loading the appropriate values into the  
configuration registers. QoS for packet transmission is enabled by performing the following four  
steps:  
1. Select the TOS/DS or VLAN Priority Tag field as the control for IP packet transmission.  
The selection is made using bit 7 of the Flooding Control (FCR[7]) register.  
-
FCR[7]=0, use VLAN Priority Tag field to map the transmission priority if this Tag  
field exists.  
-
FCR[7]=1, use TOS/DS field for IP packet transmission priority mapping.  
2. Select which TOS/DS field to use as the control for packet transmission priority if the  
TOS/DS field was selected in step 1. The selection is made using bit 6 of the FCB Buffer  
Low Threshold (FCBST[6]) register.  
-
-
FCBST[6]=0, use DTR subfield to map the transmission priority.  
FCBST[6]=1, use IP precedence subfield1 to map the transmission priority.  
1 IP precedence and DTR subfields are referred to as TOS/DS[0:2] and TOS/DS[3:5] in the IP TOS/DS  
byte.  
VERTEX NETWORKS, INC.  
6
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
3. Set the transmission queue weight for the high priority queue in the Transmission  
Scheduling Control (AXSC[3:0]) register.  
4. Set the priority mappings from the TOS/DS or VLAN Priority Tag field to the high or low  
priority output queue. The selection is made using the VLAN Priority Map (AVPM) and  
TOS Priority Map (TOSPML) registers.  
Note that, for half duplex operation, the priority queues2 must be enabled using bit 7 in the  
Transmission Scheduling Control (AXSC[7]) register to utilize the QoS function.  
When QoS is enabled, VTX1100 will utilize WRR to schedule packet transmission, and will use  
Weighted Random Early Detection/Drop (WRED) to drop random packets in order to handle buffer  
memory congestion. In this method, only certain packet flows are slowed down while the remaining  
see no impact from the network traffic congestion.  
Weighted Random Early Detection/Drop (WRED) is a method of handling traffic congestion in the  
absence of flow control mechanisms. When flow control is enabled, all devices that are connected to  
a switch node that is exercising flow control are effectively unable to transmit, including nodes that  
are not directly responsible for the congestion problem. This inability to transmit during flow control  
periods would play havoc with voice packets, or other high priority packet flows, and therefore flow  
control is not recommended for networks that mix voice and data traffic.  
WRED allows traffic to continue flowing into ports on a switch, and randomly drops packets with  
different probabilities based upon each packet’s priority markings. As the switch congestion  
increases, the probability of dropping an input packet increases, and as congestion decreases, the  
probability of dropping an input packet decreases. In this manner, only traffic flows that have had  
packets dropped will be affected by the congestion. Other traffic flows will see no effect.  
The following table summarizes the WRED operation of the VTX1100. It lists the buffer thresholds  
at which each drop probability takes effect.  
WRED Threshold  
Hi Priority Low Priority  
Level 0 total buffer space available is < LPBT buffer  
Drop Percentage  
Hi Drop Priority Low Drop Priority  
50%  
75%  
100%  
0%  
25%  
50%  
Level 1  
Level 2  
24 buffers  
None  
72 buffers  
84 buffers  
The WRED packet drop capabilities of COSMOS 2 are enabled by performing the following three  
steps:  
1. Select the TOS/DS or VLAN Tag field as the control for packet dropping. The selection is  
made using bit 7 of the Flooding Control (FCR[7]) register.  
-
FCR[7]=0, use VLAN Priority Tag field to map the drop priority if this Tag field  
exists.  
-
FCR[7]=1, use ToS/DS field for IP packet transmission priority mapping.  
2. Select which TOS/DS Tag field to use for packet dropping provided that the TOS/DS field  
was selected in step 1. The selection is made using bit 7 of the FCB Buffer Low  
Threshold (FCBST[7]) register.  
-
-
FCBST[7]=0, use DTR subfield to map the drop priority.  
FCBST[7]=1, use IP precedence subfield to map the drop priority.  
3. Set the drop mappings from the TOS/DS or VLAN Tag field to the high or low drop  
priority output flag. The selection is made using the VLAN Drop Map (AVDM) and TOS  
Discard Map (TOSDML) registers.  
2 In Half Duplex mode, the QoS functions are disabled by default.  
VERTEX NETWORKS, INC.  
7
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
Note that to utilize the QoS function of the VTX1100, flow control has to be disabled.  
7 Buffer Management  
VTX1100 stores each input packet into the external frame buffer memory while determining the  
destination the packet is to be forwarded to. The total number of packets that can be stored in the  
frame buffer memory depends upon the size of the external SSRAM that is utilized. For a 256k byte  
SSRAM VTX1100 can buffer 170 packets. For a 512K byte SSRAM VTX1100 can buffer 340 packets.  
In order to provide good Quality of Service characteristics, VTX1100 must allocate the available  
buffer space to low and high priority unicast and multicast traffic. This can be accomplished using  
the external EEPROM to load the appropriate values into VTX1100 configuration registers. To  
allow the designer to set the minimum number of buffers provided for low drop priority unicast  
traffic, use the Low Drop Priority Buffer Threshold (LPBT[7:0]) register. To set the maximum  
number of buffers allocated for all multicast packets, use the Multicast Buffer Control (MBCR[7:0])  
register.  
During operation VTX1100 will continuously monitor the amount of frame buffer memory that is  
available, and when the unused buffer space falls below a designer configurable threshold, VTX1100  
will begin to drop incoming packets (WRED). This threshold is set using the FCB Buffer Low  
Threshold (FCBST[5:0]) register.  
8 Virtual LANs  
VTX1100 provides the designer the ability to define a single port-based Virtual LAN (VLAN) for each  
of the eight ports. This VLAN is individually defined for each port using the Port Control Registers  
(ECR1Px[6:4]). Bits [6:4] allow the designer to define a VLAN ID (value between 0 – 7) for each port.  
When packets arrive at an input of VTX1100, the search engine will determine the VLAN ID for that  
port, and then determine which of the other ports also are members of that VLAN by matching their  
assigned VLAN Id values. The packet will then be transmitted to each port with the same VLAN ID  
as the source port.  
9 Concentration Mode  
VTX1100 supports a Concentration Mode, where each of the 0-7 port is only allowed to directly  
communicate with the uplink port 8. This mode ensures that data from any of ports 0-7 cannot be  
directly seen by any other port. This feature is used in MDU applications to provide data privacy to  
subscribers.  
To use this mode, a CONC (concentration) bit in each ECR1 register of ports 0-8 must be enabled,  
i.e., ECR1 [7]=1, and ports 0-7 must each be set on a separate VLAN. Note that, in concentration  
mode, the VLAN of port 8 will be ignored.  
A more flexible concentration mode can be set up. For this mode, ports 0 –7 are partitioned into  
several groups, sharing the same VLAN ID. This will allow traffic within the same group to freely  
communicate with each other, while continuing to communicate outside the group in concentration  
mode.  
VERTEX NETWORKS, INC.  
8
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
10 Port Trunking  
Port trunking allows the designer to configure the VTX1100, such that ports 0 and 1 are defined as a  
logical port. This provides a 20Mb/s link to a switch or server using two 10Mb/s ports in parallel.  
Ports 0 and 1 can be trunked by pulling the TRUNK_EN pin to the high state. In this mode, the  
source MAC address of all packets received from the trunk are checked against the MCT database to  
ensure that they have a port ID of 0 or 1. Packets that have a port ID other than 0 and 1 will effect  
the VTX1100 to learn the new MAC address for this port change.  
On transmission, the selected trunk port is determined by hashing the source and destination MAC  
addresses. This provides a one-to-one mapping between the trunk port and the MAC addresses.  
Subsequent packets with the same MAC addresses will always utilize the same trunk port.  
VTX1100 also provides a safe fail-over mode for port trunking. If one of the two ports goes down, via  
the ports link signal, VTX1100 will switch all traffic destined to the failed port over to the remaining  
port in the trunk. Thus maintaining the trunk link, albeit at a lower effective bandwidth.  
11 Port Mirroring  
The port mirroring function is only supported in RMII mode. Using the 4 port mirroring control pins  
provides the ability to enable or disable port mirroring, select which of the remaining 7 ports is to be  
mirrored, and whether the received or transmitted data is being mirrored. The control for this  
function is shown in the following table.  
Mirrored Port  
Port 0 RCV  
Port 0 XMT  
Port 1 RCV  
Port 1 XMT  
Port 2 RCV  
Port 2 XMT  
Port 3 RCV  
Port 3 XMT  
Port 4 RCV  
Port 4 XMT  
Port 5 RCV  
Port 5 XMT  
Port 6 RCV  
Port 6 XMT  
Disabled  
Mirror_Control [3]  
Mirror_Control [2]  
Mirror_Control [1]  
Mirror_Control [0]  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0/1  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
When enabled, port mirroring will allow the user to monitor traffic going through the switch on  
output Port 7. If the port mirroring control pins, Mirror_Control[3:0], are left floating, VTX1100 will  
operate with the port mirroring function disabled. When port mirroring is enabled, the user must  
configure Port 7 to operate in the same mode as the port it is mirroring (autoneg, duplex, speed, flow  
control).  
VERTEX NETWORKS, INC.  
9
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
12 Power Saving Mode in MAC  
The power saving mode is activated only in RMII mode. VTX1100 was designed to be power efficient.  
When the internal RMII MAC sections detect that the external port in not receiving or transmitting  
packets, it will shut down and conserve power. When new packet data is loaded into the output  
transmit FIFO of a MAC in power saving mode, the MAC will return to life and begin operating  
immediately.  
When the MAC is in power saving mode and new packet data is received on the RMII interface, the  
MAC will return to life and receive data normally into the receive FIFO. This wake up occurs when  
the MAC sees the CRS_DV signal asserted.  
Using this method, the switch will turn off all MAC sections during periods when there is no network  
activity (at night for example), and save power. For large networks this power savings can be  
significant. To achieve the maximum power efficiency, the designer should use a physical layer  
transceiver that utilizes “Wake-On-LAN” technology.  
13 EEPROM I2C Interface  
A simple 2 wire serial interface is provided to allow the configuration of the VTX1100 via an external  
EEPROM. VTX1100 utilizes a 1K bit EEPROM with an I2C interface.  
14 Management Interface  
VTX1100 uses a standard parallel port interface to provide external CPU access to the internal  
registers. This parallel interface consists of 3 pins: DATA0; STROBE; and ACK. The DATA0 pin  
provides the address and data content input to VTX1100, while the ACK pin provides the  
corresponding output to the external CPU. The STROBE pin is provided as the clock for both serial  
data streams. Any of its internal registers can be modified through this parallel port interface.  
Write Command  
STROBE-  
2 Extra clocks after last  
transfer  
DATA  
A2 A3  
A6  
D0 D1 D2 D3 D4 D5 D6 D7  
DATA  
A0 A1  
START  
A4 A5  
W
ADDRESS  
COMMAND  
Read Command  
STROBE-  
DATA  
R
A0 A1  
A5 A6  
A2 A3 A4  
ADDRESS  
START  
COMMAND  
D0 D1  
DATA  
D4  
D7  
D5 D6  
ACK-  
D2 D3  
VERTEX NETWORKS, INC.  
10  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
Each management interface transfer consists of four parts:  
1. A START pulse – occurs when DATA is sampled high when STROBE is rising  
followed by  
DATA being sampled low when STROBE falls.  
2. Register Address strobed into DATA0 pin by the high level of the STROBE pin.  
3. Either a Read or Write Command (see waveforms above).  
4. Data to be written provided on DATA0, or data to be read back provided on ACK.  
Any command can be aborted in the middle by sending an ABORT pulse to VTX1100. An ABORT  
pulse occurs when DATA is sampled low and STROBE is rising, then DATA is sampled high when  
STROBE falls.  
VERTEX NETWORKS, INC.  
11  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
15 Configuration Register Definitions  
VTX1100 registers can be accessed via the parallel interface and/or the I2C interface. Some registers  
are only accessible through the parallel interface. The access method for each register is listed in the  
individual register definitions. Each register is 8-bit wide.  
15.1 GCR - GLOBAL CONTROL REGISTER  
§
§
Access: parallel interface, Write Only  
Address: h30  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
Store configuration  
Store configuration and reset  
Start BIST  
(Default = 0)  
(Default = 0)  
(Default = 0)  
(Default = 0)  
Reset system  
15.2 DCR0 - DEVICE STATUS AND SIGNATURE REGISTER  
§
§
Access: parallel interface, Read Only  
Address: h31  
Bit 0  
Busy writing configuration from I2C  
Bit 1  
Busy reading configuration from I2C  
BIST in progress  
RAM Error  
Bit 2  
Bit 3  
Bit [5:4]  
Bit [7:6]  
Reserved  
Revision  
15.3 DA – DA REGISTER  
§
§
Access: parallel interface, Read Only  
Address: h36  
Always returns 8-bit value hDA. Indicates  
the parallel port connection is good.  
(Default DA)  
15.4 MBCR – MULTICAST BUFFER CONTROL REGISTER (ADDRESS H00)  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h00  
Bit [7:0]  
MAX_CNT_LMT  
Maximum Number of Multicast  
Frames allowed  
(Default = 1F)  
VERTEX NETWORKS, INC.  
12  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
15.5 FCBST – FCB BUFFER LOW THRESHOLD  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h01  
Bit [5:0]  
BUF_LOW_TH  
Buffer Low Threshold – number of  
FCB left before triggering WRED.  
Use IP precedence field (TOS[0:2]) for  
Priority  
Use IP precedence field (TOS[0:2]) for  
Drop  
(Default = 1F)  
(Default = 0)  
(Default = 0)  
Bit 6  
Bit 7  
Note that, for Bit 6 and 7, Default=0 means to use DTR filed (TOS[3:5])  
15.6 LPBT – LOW DROP PRIORITY BUFFER THRESHOLD  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h02  
Bit [7:0]:  
LOW_PRI_CNT:  
Number of frame buffers  
(Default 3F)  
reserved for low dropping traffic.  
15.7 FCR – FLOODING CONTROL REGISTER  
Access: parallel interface and I2C, Read/Write  
Address: h03  
Bit [3:0]  
Bit [6:4]  
U2MR  
Unicast to Multicast Rate  
(Default = 8)  
(Default = 000)  
TimeBase: 000 = 100us  
001 = 200us  
011 = 800us  
101 = 3.2ms  
111 = 100us  
010 = 400us  
100 = 1.6ms  
110 = 6.4ms  
Bit [7]  
USE_TOS  
Pick TOS over VLAN Priority for  
IP Packet.  
(Default = 0)  
(Default 00)  
15.8 AVTCL – VLAN TYPE CODE REGISTER LOW  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h04  
Bit [7:0]  
VLANType_LOW  
Lower 8 bits of VLAN type code.  
15.9 AVTCH – VLAN TYPE CODE REGISTER HIGH  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h05  
Bit [7:0]  
VLANType_HIGH  
Upper 8 bits of the VLAN type code (Default 81)  
VERTEX NETWORKS, INC.  
13  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
15.10 AVPM – VLAN PRIORITY MAP  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h06  
Map VLAN tag into 2 transmit queues. (0 = low priority, 1 = high priority)  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Mapped priority of tag value 0  
Mapped priority of tag value 1  
Mapped priority of tag value 2  
Mapped priority of tag value 3  
Mapped priority of tag value 4  
Mapped priority of tag value 5  
Mapped priority of tag value 6  
Mapped priority of tag value 7  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
15.11 AVDM – VLAN DISCARD MAP  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h07  
Map VLAN tag into frame discard when low priority buffer usage is above threshold  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Frame discard for tag value 0  
Frame discard for tag value 1  
Frame discard for tag value 2  
Frame discard for tag value 3  
Frame discard for tag value 4  
Frame discard for tag value 5  
Frame discard for tag value 6  
Frame discard for tag value 7  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
15.12 TOSPML – TOS/DS PRIORITY MAP LOW  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h08  
Map TOS field in IP packet into 2 transmit queues (0 = low priority, 1 = high priority)  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Mapped priority when TOS is 0  
Mapped priority when TOS is 13  
Mapped priority when TOS is 2  
Mapped priority when TOS is 3  
Mapped priority when TOS is 4  
Mapped priority when TOS is 5  
Mapped priority when TOS is 6  
Mapped priority when TOS is 7  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
3 TOS=1 means TOS[0:2]=”001’  
VERTEX NETWORKS, INC.  
14  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
15.13 TOSDML – TOS/DS DISCARD MAP  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h0A  
Map TOS into frame discard when low priority buffer usage is above threshold  
Bit 0  
Bit1  
Frame discard when TOS is 0  
Frame discard when TOS is 1  
Frame discard when TOS is 2  
Frame discard when TOS is 3  
Frame discard when TOS is 4  
Frame discard when TOS is 5  
Frame discard when TOS is 6  
Frame discard when TOS is 7  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
15.14 AXSC – TRANSMISSION SCHEDULING CONTROL REGISTER  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h0B  
Bit [3:0]:  
Transmission Queue Service Weight (Default F)  
for high priority queue.  
Bit [4]  
Bit [5]  
Bit [6]:  
Reserved  
Reserved  
Global Flow Control  
(Default 0,  
enable)  
Bit [7]:  
Half Duplex Priority Enable  
(Default 0)  
15.15 MII_OP0 – MII REGISTER OPTION 0  
§
§
Access by parallel interface and I2C, Read/Write  
Address: h0C  
To provide a non-standard address for the Phy Status Register. When low and  
high Address bytes are 0, VTX1100 will use the standard address.  
Bit [7:0]  
Low order address byte  
(Default 00)  
(Default 00)  
(Default 25)  
15.16 MII_OP1 – MII REGISTER OPTION 1  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h0D  
Bit [7:0]  
High order address byte  
§
15.17 AGETIME_LOW – MAC ADDRESS AGING TIMER LOW  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h0E  
Bit [7:0]  
Low byte of the MAC address aging  
timer.  
VERTEX NETWORKS, INC.  
15  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
15.18 AGETIME_HIGH – MAC ADDRESS AGING TIMER HIGH  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h0F  
Bit [7:0]  
High byte of the MAC address aging (Default 01)  
timer.  
The aging time is based on the  
following equation:  
The default  
setting provides  
{AGETIME_TIME,AGETIME_LOW} a 300 second  
X 1024ms  
aging time at  
SCLK=50Mhz .  
15.19 ECR1P0 – PORT 0 CONTROL REGISTER  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h10  
Bit [3:0]  
RMII Port Mode  
Only for RMII mode,  
Serial Mode DON’T CARE  
1 – Flow Control Off  
(Default 0000)  
Bit [0]  
0 – Flow Control On  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Half Duplex  
0 – Full Duplex  
1 – 10Mbps  
0 – 100Mbps  
1 – Force configuration based on Bit[2:0]  
0 – Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
15.20 ECR1P1 – PORT 1 CONTROL REGISTER  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h11  
Bit [3:0]  
RMII Port Mode  
Only for RMII mode,  
Serial Mode DON’T CARE  
1 – Flow Control Off  
(Default 0000)  
Bit [0]  
0 – Flow Control On  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Half Duplex  
0 – Full Duplex  
1 – 10Mbps  
0 – 100Mbps  
1 – Force configuration based on Bit[2:0]  
0 – Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
VERTEX NETWORKS, INC.  
16  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
15.21 ECR1P2 – PORT 2 CONTROL REGISTER  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h12  
Bit [3:0]  
RMII Port Mode  
Only for RMII mode,  
Serial Mode DON’T CARE  
1 – Flow Control Off  
(Default 0000)  
Bit [0]  
0 – Flow Control On  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Half Duplex  
0 – Full Duplex  
1 – 10Mbps  
0 – 100Mbps  
1 – Force configuration based on Bit[2:0]  
0 – Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
15.22 ECR1P3 – PORT 3 CONTROL REGISTER  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h13  
Bit [3:0]  
RMII Port Mode  
Only for RMII mode,  
Serial Mode DON’T CARE  
1 – Flow Control Off  
(Default 0000)  
Bit [0]  
0 – Flow Control On  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Half Duplex  
0 – Full Duplex  
1 – 10Mbps  
0 – 100Mbps  
1 – Force configuration based on Bit[2:0]  
0 – Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
VERTEX NETWORKS, INC.  
17  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
15.23 ECR1P4 – PORT 4 CONTROL REGISTER  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h14  
Bit [3:0]  
RMII Port Mode  
Only for RMII mode,  
Serial Mode DON’T CARE  
1 – Flow Control Off  
(Default 0000)  
Bit [0]  
0 – Flow Control On  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Half Duplex  
0 – Full Duplex  
1 – 10Mbps  
0 – 100Mbps  
1 – Force configuration based on Bit[2:0]  
0 – Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
15.24 ECR1P5 – PORT 5 CONTROL REGISTER  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h15  
Bit [3:0]  
RMII Port Mode  
Only for RMII mode,  
Serial Mode DON’T CARE  
1 – Flow Control Off  
(Default 0000)  
Bit [0]  
0 – Flow Control On  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Half Duplex  
0 – Full Duplex  
1 – 10Mbps  
0 – 100Mbps  
1 – Force configuration based on Bit[2:0]  
0 – Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
VERTEX NETWORKS, INC.  
18  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
15.25 ECR1P6 – PORT 6 CONTROL REGISTER  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h16  
Bit [3:0]  
RMII Port Mode  
Only for RMII mode,  
Serial Mode DON’T CARE  
1 – Flow Control Off  
(Default 0000)  
Bit [0]  
0 – Flow Control On  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Half Duplex  
0 – Full Duplex  
1 – 10Mbps  
0 – 100Mbps  
1 – Force configuration based on Bit[2:0]  
0 – Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
15.26 ECR1P7 – PORT 7 CONTROL REGISTER  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h17  
Bit [3:0]  
RMII Port Mode  
Only for RMII mode,  
Serial Mode DON’T CARE  
1 – Flow Control Off  
(Default 0000)  
Bit [0]  
0 – Flow Control On  
Bit [1]  
Bit [2]  
Bit [3]  
1 – Half Duplex  
0 – Full Duplex  
1 – 10Mbps  
0 – 100Mbps  
1 – Force configuration based on Bit[2:0]  
0 – Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
VERTEX NETWORKS, INC.  
19  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
15.27 ECR1P8 – PORT 8 CONTROL REGISTER  
§
§
Access: parallel interface and I2C, Read/Write  
Address: h18  
Bit [3:0]  
Bit [3]  
Port Mode  
(Default 0000)  
1 – Force configuration based on Bit[2:0]  
0 – Auto and advertise based on Bit[2:0]  
Bit [2]  
Bit [1]  
Bit [0]  
1 – 10Mbps  
0 – 100Mbps  
1 – Half Duplex  
0 – Full Duplex  
1 – Flow Control Off  
0 – Flow Control On  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
VERTEX NETWORKS, INC.  
20  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
16 VTX1100 Pin Descriptions  
Note:  
#
I
Active low signal  
Input signal  
S
O
Input signal with Schmitt-Trigger  
Output signal  
OD  
I/O  
SL  
D
Open-Drain driver  
Input & Output signal  
Slew Rate Controlled  
Pulldown  
U
Pullup  
5
5V Tolerance  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Databus to Frame Buffer Memory  
Frame Buffer Memory Interface  
201,200,199,197,196, L_D[31:0]  
195,193,192,191,190,  
188,187,186,185,183,  
182,181,179,178,177,  
176,174,173,172,170,  
169,168,167,165,164,  
163,161  
I/O, U, SL  
203, 151,158,160,  
L_A[18:2]  
I/O, U, SL  
Address pins for buffer memory  
10,9,8,6,5,4,2,1,208,  
206,205,204, 150,  
153  
155  
156  
157  
L_CLK  
L_WE#  
L_OE#  
O
Frame Buffer Memory Clock  
O, SL  
O
Frame Buffer Memory Write Enable  
Frame Buffer Memory Output Enable  
L_ADSC#  
O, SL  
MII Management Interface  
120  
122  
M_MDC  
M_MDIO  
O
MII Management Data Clock  
MII Management Data I/O  
I/O, U  
I2C Interface (Serial EEPROM Interface)  
123  
124  
SCL  
SDA  
O, U, 5  
I2C Data Clock  
I/O, U, OD, 5 I2C Data I/O  
Parallel Port Management Interface  
127  
128  
129  
STROBE  
DATA0  
ACK  
I, U, S, 5  
I, U, 5  
Data Pin  
O, U, OD, 5  
VERTEX NETWORKS, INC.  
21  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Port 0 Serial Interface  
23  
M0_RXD  
I, U  
I, U  
I, D  
O
Port 0 Receive Data  
Port 0 Receive Clock  
24  
M0_RXCLK  
M0_CRS_DV  
M0_TXD  
22  
Port 0 Carrier Sense and Data Valid  
Port 0 Transmit Data  
20  
21  
M0_TXCLK  
M0_TXEN  
M0_CLS  
I
Port 0 Transmit Clock  
19  
O
Port 0 Transmit Enable  
12  
I, U  
I,U  
I, U  
Port 0 Collision Detection  
Port 0 Link Status  
13  
M0_LINK  
14  
M0_DUPLEX  
Port 0 Full-Duplex Select (half-duplex = 0)  
Port 1 Serial Interface  
30  
M1_RXD  
I, U  
I, U  
I, D  
O
Port 1 Receive Data  
31  
M1_RXCLK  
M1_CRS_DV  
M1_TXD  
Port 1 Receive Clock  
29  
Port 1 Carrier Sense and Data Valid  
Port 1 Transmit Data  
27  
28  
M1_TXCLK  
M1_TXEN  
M1_CLS  
I
Port 1 Transmit Clock  
26  
O
Port 1 Transmit Enable  
Port 1 Collision Detection  
Port 1 Link Status  
15  
I, U  
I, U  
I, U  
16  
M1_LINK  
M1_DUPLEX  
17  
Port 0 Full-Duplex Select (half-duplex = 0)  
Port 2 Serial Interface  
37  
M2_RXD  
I, U  
I, U  
I, D  
O
Port 2 Receive Data  
38  
M2_RXCLK  
M2_CRS_DV  
M2_TXD  
Port 2 Receive Clock  
36  
Port 2 Carrier Sense and Data Valid  
Port 2 Transmit Data  
34  
35  
M2_TXCLK  
M2_TXEN  
M2_CLS  
I
Port 2 Transmit Clock  
33  
O
Port 2 Transmit Enable  
Port 2 Collision Detection  
Port 2 Link Status  
47  
I, U  
I, U  
I, U  
48  
M2_LINK  
M2_DUPLEX  
49  
Port 2 Full-Duplex Select (half-duplex = 0)  
Port 3 Serial Interface  
44  
45  
43  
41  
42  
40  
50  
51  
52  
M3_RXD  
I, U  
I, U  
I, D  
O
Port 3 Receive Data  
M3_RXCLK  
M3_CRS_DV  
M3_TXD  
Port 3 Receive Clock  
Port 3 Carrier Sense and Data Valid  
Port 3 Transmit Data  
M3_TXCLK  
M3_TXEN  
M3_CLS  
I
Port 3 Transmit Clock  
O
Port 3 Transmit Enable  
Port 3 Collision Detection  
Port 3 Link Status  
I, U  
I, U  
I, U  
M3_LINK  
M3_DUPLEX  
Port 3 Full-Duplex Select (half-duplex = 0)  
VERTEX NETWORKS, INC.  
22  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
Pin No(s).  
Symbol  
M4_RXD  
Type  
Name & Functions  
Port 4 Serial Interface  
64  
I, U  
I, U  
I, D  
O
Port 4 Receive Data  
Port 4 Receive Clock  
65  
M4_RXCLK  
M4_CRS_DV  
M4_TXD  
63  
Port 4 Carrier Sense and Data Valid  
Port 4 Transmit Data  
61  
62  
M4_TXCLK  
M4_TXEN  
M4_CLS  
I
Port 4 Transmit Clock  
60  
O
Port 4 Transmit Enable  
53  
I, U  
I, U  
I, U  
Port 4 Collision Detection  
Port 4 Link Status  
54  
M4_LINK  
55  
M4_DUPLEX  
Port 4 Full-Duplex Select (half-duplex = 0)  
Port 5 Serial Interface  
71  
M5_RXD  
I, U  
I, U  
I, D  
O
Port 5 Receive Data  
72  
M5_RXCLK  
M5_CRS_DV  
M5_TXD  
Port 5 Receive Clock  
70  
Port 5 Carrier Sense and Data Valid  
Port 5 Transmit Data  
68  
69  
M5_TXCLK  
M5_TXEN  
M5_CLS  
I
Port 5 Transmit Clock  
67  
O
Port 5 Transmit Enable  
Port 5 Collision Detection  
Port 5 Link Status  
56  
I, U  
I, U  
I, U  
57  
M5_LINK  
M5_DUPLEX  
58  
Port 5 Full-Duplex Select (half-duplex = 0)  
Port 6 Serial Interface  
78  
M6_RXD  
I, U  
I, U  
I, D  
O
Port 6 Receive Data  
79  
M6_RXCLK  
M6_CRS_DV  
M6_TXD  
Port 6 Receive Clock  
77  
Port 6 Carrier Sense and Data Valid  
Port 6 Transmit Data  
75  
76  
M6_TXCLK  
M6_TXEN  
M6_CLS  
I
Port 6 Transmit Clock  
74  
O
Port 6 Transmit Enable  
Port 6 Collision Detection  
Port 6 Link Status  
88  
I, U  
I, U  
I, U  
89  
M6_LINK  
M6_DUPLEX  
90  
Port 6 Full-Duplex Select (half-duplex = 0)  
Port 7 Serial Interface  
85  
86  
84  
82  
83  
81  
91  
92  
93  
M7_RXD  
I, U  
I, U  
I, D  
O
Port 7 Receive Data  
M7_RXCLK  
M7_CRS_DV  
M7_TXD  
Port 7 Receive Clock  
Port 7 Carrier Sense and Data Valid  
Port 7 Transmit Data  
M7_TXCLK  
M7_TXEN  
M7_CLS  
I
Port 7 Transmit Clock  
O
Port 7 Transmit Enable  
Port 7 Collision Detection  
Port 7 Link Status  
I, U  
I, U  
I, U  
M7_LINK  
M7_DUPLEX  
Port 7 Full-Duplex Select (half-duplex = 0)  
VERTEX NETWORKS, INC.  
23  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Port 0 RMII Interface  
24,23  
M0_RXD[1:0]  
M0_CRS_DV  
M0_TXD[1:0]  
M0_TXEN  
I, U  
I, D  
O
Port 0 Receive Data  
22  
Port 0 Carrier Sense and Data Valid  
Port 0 Transmit Data  
21,20  
19  
O
Port 0 Transmit Enable  
Port 1 RMII Interface  
31,30  
M1_RXD[1:0]  
M1_CRS_DV  
M1_TXD[1:0]  
M1_TXEN  
I, U  
I, D  
O
Port 1 Receive Data  
29  
Port 1 Carrier Sense and Data Valid  
Port 1 Transmit Data  
28,27  
26  
O
Port 1 Transmit Enable  
Port 2 RMII Interface  
38,37  
M2_RXD[1:0]  
M2_CRS_DV  
M2_TXD[1:0]  
M2_TXEN  
I, U  
I, D  
O
Port 2 Receive Data  
36  
Port 2 Carrier Sense and Data Valid  
Port 2 Transmit Data  
35,34  
33  
O
Port 2 Transmit Enable  
Port 3 RMII Interface  
45,44  
M3_RXD[1:0]  
M3_CRS_DV  
M3_TXD[1:0]  
M3_TXEN  
I, U  
I, D  
O
Port 3 Receive Data  
43  
Port 3 Carrier Sense and Data Valid  
Port 3 Transmit Data  
42,41  
40  
O
Port 3 Transmit Enable  
Port 4 RMII Interface  
65,64  
M4_RXD[1:0]  
M4_CRS_DV  
M4_TXD[1:0]  
M4_TXEN  
I, U  
I, D  
O
Port 4 Receive Data  
63  
Port 4 Carrier Sense and Data Valid  
Port 4 Transmit Data  
62,61  
60  
O
Port 4 Transmit Enable  
Port 5 RMII Interface  
72,71  
M5_RXD[1:0]  
M5_CRS_DV  
M5_TXD[1:0]  
M5_TXEN  
I, U  
I, D  
O
Port 5 Receive Data  
70  
Port 5 Carrier Sense and Data Valid  
Port 5 Transmit Data  
69,68  
67  
O
Port 5 Transmit Enable  
Port 6 RMII Interface  
79,78  
M6_RXD[1:0]  
M6_CRS_DV  
M6_TXD[1:0]  
M6_TXEN  
I, U  
I, D  
O
Port 6 Receive Data  
77  
Port 6 Carrier Sense and Data Valid  
Port 6 Transmit Data  
76,75  
74  
O
Port 6 Transmit Enable  
Port 7 RMII Interface  
86,85  
84  
M7_RXD[1:0]  
M7_CRS_DV  
M7_TXD[1:0]  
M7_TXEN  
I, U  
I, D  
O
Port 7 Receive Data  
Port 7 Carrier Sense and Data Valid  
Port 7 Transmit Data  
83,82  
81  
O
Port 7 Transmit Enable  
VERTEX NETWORKS, INC.  
24  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Port 8 MII Interface  
105,104,103,102  
M8_RXD[3:0]  
M8_TXD[3:0]  
M8_TXEN  
I, U  
O
Port 8 Receive Data  
113,112,111,110  
Port 8 Transmit Data  
Port 8 Transmit Enable  
Port 8 Receive Data Valid  
Port 8 Receive Clock  
109  
97  
O
M8_RXDV  
I, D  
I, U  
100  
107  
114  
116  
115  
98  
M8_RXCLK  
M8_TXCLK  
M8_LINK  
I/O, U Port 8 Transmit Clock  
I, U Port 8 Link Status  
I/O, U Port 8 Speed Select (100Mb = 1)  
M8_SPEED  
M8_DUPLEX  
M8_COL  
I, U  
I, U  
Port 8 Full-Duplex Select (half-duplex = 0)  
Port 8 Collision Detect  
118  
M8_REFCLK  
O, U  
Port 8 Reference Clock  
M8_REFCLK=1/2 M_CLK  
Port 8 Serial Interface  
102  
100  
97  
S8_RXD  
I, U  
I, U  
I, D  
Port 8 Serial Receive Data  
Port 8 Serial Receive Clock  
S8_RXCLK  
S8_CRS_DV  
Port 8 Serial Carrier Sense and Data  
Valid  
110  
107  
109  
98  
S8_TXD  
O
I
Port 8 Serial Transmit Data  
Port 8 Serial Transmit Clock  
Port 8 Serial Transmit Enable  
Port 8 Serial Collision Detect  
Port 8 Link Status  
S8_TXCLK  
S8_TXEN  
S8_COL  
O
I, U  
I, U  
I, U  
114  
115  
S8_LINK  
S8_DUPLEX  
Port 8 Full-Duplex Select (half-duplex = 0)  
Miscellaneous Control Pins  
95  
M_CLK  
I
Reference Clock for Serial interface =  
50Mhz±50ppm  
148  
SCLK  
I
System Clock (50 Mhz)  
Port Trunking Enable  
126  
TRUNK_EN  
RESIN_  
I, D  
I, S  
O
142  
141  
RESETOUT_  
MIR_CTL[3:0]  
146,145,144,143  
I/O, U Port Mirroring Control  
(only for RMII mode)  
Test Pins  
125  
TEST#  
NO Connect  
139  
TMODE  
I/O, U Puts VTX1100 into test mode for ATE test  
138,137,136,135  
134,133,132,131  
TSTOUT[7:4]  
TSTOUT[3:0]  
O
Test Outputs  
I/O, U Test Outputs  
VERTEX NETWORKS, INC.  
25  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Power Pins  
3,39,73,96,130,159,184 VDD (Core)  
Input +3.3 Volt DC Supply for Core Logic  
(7 pins)  
11,25,59,87,101,108,119 VDD  
147,152,166,175,  
Input +3.3 Volt DC Supply for I/O Pads (13 pins)  
194, 202  
18,46,80,106,140,171,  
198  
VSS (Core)  
Input Ground for Core Logic (7 pins)  
Input Ground for I/O Pads (13 pins)  
7,32,66,94,99,117,121,1 VSS  
49154,162,180,189,  
207  
VERTEX NETWORKS, INC.  
26  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
16.1 STRAP OPTIONS  
The Strap options are relevant during the initial power-on period, when reset is asserted. During  
reset, CoSMOS will examine the boot strap address pin to determine its value and modify the  
internal configuration of the chip accordingly.  
“1” means Pull UP  
“0” means Pull Down with an external 1K Ohm  
Default value is 1, (all boot strap pins have internal pull up resistor).  
Pin No(s).  
Symbol  
Name & Functions  
Boot Strap Pins  
206 (L_A[5])  
Memory size  
EEPROM  
1–Memory size = 256KB,  
0 –Memory size = 512KB  
1 – NO EEPROM Installed  
0 – EEPROM Installed4  
11 – 100Mbps  
208 (L_A[6])  
5,4 (L_A [10:9])  
XLINK Speed  
10 – 200Mbps  
01 – 300Mbps  
00 – 400Mbps (0—Pull down, 1—Pull up)  
1 –MII Mode for port 8  
0 –Serial mode for port 8  
Link Polarity for serial interface  
1 –Active Low  
151 (L_A[17])  
150 (L_A[2])  
Port 8  
MII/Serial  
Link Polarity  
FDX Polarity  
Device ID  
0 –Active High  
204 (L_A[3])  
Full/Half Duplex Polarity for serial interface  
1 – Active Low  
0 – Active High  
2 (L_A[8])  
Use in cascade mode only.  
133 (TST[2])  
SRAM Self Test For Board/System Manufacturing Test5  
1 – Disable  
0 – Enable  
4 – If the VTX1100 is configured from EEPROM preset (L_A[6] pulled down at reset), it will try to  
load its configuration from the EEPROM. If the EEPROM is blank or not preset, it will not boot up.  
The parallel port can be used to program the EEPROM at any time.  
5 – During normal power-up CoSMOS 2 will run through an external SSRAM memory test to ensure  
that there are no memory interface problems. If a problem is detected, the chip will stop functioning.  
To facilitate board debug in the event that a system stops functioning, the DS108A can be put into a  
continuous SSRAM self test mode to allow an operator to determine if there are stuck pins in the  
memory interface (using network analyzer).  
VERTEX NETWORKS, INC.  
27  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
16.2 PIN REFERENCE TABLE  
Pin Name  
Pin  
#
Pin Name  
Pin #  
Pin Name  
Pin Pin Name Pin  
#
#
L_A[7]  
L_A[8]  
1
2
M4_CLS  
M4_LINK  
53 M8_RXD[3]  
54 VSS (CORE)  
105 L_ADSC#  
106 L_A[16]  
157  
158  
VDD (CORE)  
L_A[9]  
L_A[10]  
L_A[11]  
VSS  
L_A[12]  
L_A[13]  
L_A[14]  
VDD  
3
4
5
6
7
8
9
M4_DUPLEX  
M5_CLS  
M5_LINK  
M5_DUPLEX  
VDD  
M4_TXEN  
55 M8_TXCLK/S8_TXCLK  
56 VDD  
57 M8_TXEN/S8_TXEN  
58 M8_TXD[0]/S8_TXD  
59 M8_TXD[1]  
60 M8_TXD[2]  
61 M8_TXD[3]  
107 VDD (CORE) 159  
108 L_A[15]  
109 L_D[0]  
110 VSS  
111 L_D[1]  
112 L_D[2]  
113 L_D[3]  
114 VDD  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
M4_TXD/(M4_TXD[0])  
10 M4_TXCLK/(M4_TXD[1]) 62 M8_LINK/S8_LINK  
11 M4_CRS_DV  
12 M4_RXD/(M4_RXD[0])  
13 M4_RXCLK/(M4_RXD[1]) 65 VSS  
14 VSS  
15 M5_TXEN  
63 M8_DUPLEX/S8_DUPLEX 115 L_D[4]  
64 M8_SPEED  
M0_CLS  
116 L_D[5]  
117 L_D[6]  
118 L_D[7]  
M0_LINK  
M0_ DUPLEX  
M1_CLS  
66 M8_REFCLK  
67 VDD  
119 VSS (CORE) 171  
M1_LINK  
M1_DUPLEX  
VSS (CORE)  
M0_TXEN  
M0_TXD/(M0_TXD[0])+  
M0_TXCLK/(M0_TXD[1]) 21 VDD (CORE)  
M0_CRS_DV  
M0_RXD/(M0_RXD[0])  
M0_RXCLK/(M0_RXD[1]) 24 M6_TXCLK/(M6_TXD[1]) 76 DATA0  
16 M5_TXD/(M5_TXD[0])  
17 M5_TXCLK/(M5_TXD[1]) 69 VSS  
18 M5_CRS_DV  
19 M5_RXD/(M5_RXD[0])  
68 M_MDC  
120 L_D[8]  
121 L_D[9]  
122 L_D[10]  
123 VDD  
124 L_D[11]  
125 L_D[12]  
126 L_D[13]  
127 L_D[14]  
128 VSS  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
70 M_MDIO  
71 SCL  
20 M5_RXCLK/(M5_RXD[1]) 72 SDA  
73 TEST#  
74 TRUNK_ENABLE  
75 STROBE  
22 M6_TXEN  
23 M6_TXD/(M6_TXD[0])  
VDD  
M1_TXEN  
M1_TXD/(M1_TXD[0])  
25 M6_CRS_DV  
26 M6_RXD/(M6_RXD[0])  
27 M6_RXCLK/(M6_RXD[1]) 79 TSTOUT[0]  
77 ACK  
78 VDD (CORE)  
129 L_D[15]  
130 L_D[16]  
131 L_D[17]  
M1_TXCLK/(M1_TXD[1]) 28 VSS (CORE)  
80 TSTOUT[1]  
81 TSTOUT[2]  
82 TSTOUT[3]  
132 VDD (CORE) 184  
M1_CRS_DV  
29 M7_TXEN  
133 L_D[18]  
134 L_D[19]  
135 L_D[20]  
136 L_D[21]  
137 VSS  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
M1_RXD/(M1_RXD[0])  
30 M7_TXD/(M7_TXD[0])  
M1_RXCLK/(M1_RXD[1]) 31 M7_TXCLK/(M7_TXD[1]) 83 TSTOUT[4]  
VSS  
32 M7_CRS_DV  
84 TSTOUT[5]  
85 TSTOUT[6]  
M2_TXEN  
33 M7_RXD/(M7_RXD[0])  
M2_TXD/(M2_TXD[0])  
34 M7_RXCLK/(M7_RXD[1]) 86 TSTOUT[7]  
138 L_D[22]  
139 L_D[23]  
140 L_D[24]  
141 L_D[25]  
142 VDD  
M2_TXCLK/(M2_TXD[1]) 35 VDD  
87 T_MODE  
88 VSS (CORE)  
89 RSTOUT#  
90 RSTIN#  
91 (MIRROR_CONTROL[0]) 143 L_D[26]  
92 (MIRROR_CONTROL[1]) 144 L_D[27]  
93 (MIRROR_CONTROL[2]) 145 L_D[28]  
M2_CRS_DV  
M2_RXD/(M2_RXD[0])  
36 M6_CLS  
37 M6_LINK  
M2_RXCLK/(M2_RXD[1]) 38 M6_DUPLEX  
VDD (CORE)  
39 M7_CLS  
M3_TXEN  
M3_TXD/(M3_TXD[0])  
40 M7_LINK  
41 M7_DUPLEX  
M3_TXCLK/(M3_TXD[1]) 42 VSS  
94 (MIRROR_CONTROL[3]) 146 VSS (CORE) 198  
M3_CRS_DV  
M3_RXD/(M3_RXD[0])  
M3_RXCLK/(M3_RXD[1]) 45 M8_RXDV/S8_CRS_DV  
VSS (CORE)  
M2_CLS  
M2_LINK  
M2_ DUPLEX  
M3_CLS  
M3_LINK  
43 M_CLK  
44 VDD (CORE)  
95 VDD  
96 SCLK  
97 VSS  
98 L_A[2]  
99 L_A[17]  
100 VDD  
101 L_CLK  
102 VSS  
147 L_D[29]  
148 L_D[30]  
149 L_D[31]  
150 VDD  
151 L_A[18]  
152 L_A[3]  
153 L_A[4]  
154 L_A[5]  
155 VSS  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
46 M8_COL/S8_COL  
47 VSS  
48 M8_RXCLK/S8_RXCLK  
49 VDD  
50 M8_RXD[0]/S8_RXD  
51 M8_RXD[1]  
103 L_WE#  
104 L_OE#  
M3_ DUPLEX  
52 M8_RXD[2]  
156 L_A[6]  
+ : pins inside ( ) indicate for RMII pins for port 0-7.  
VERTEX NETWORKS, INC.  
28  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
16.3 VTX1100 PHYSICAL PINOUT  
208  
157  
156  
1
L_A[7]  
L_OE#  
L_A[8]  
L_WE#  
VDD (CORE)  
VSS  
L_A[9]  
L_A[10]  
L_A[11]  
L_CLK  
VDD  
L_A[17]  
L_A[2]  
Pin 1 I.D.  
Buffer Mem Interface  
VSS  
L_A[12]  
VSS  
L_A[13]  
SCLK  
L_A[14]  
VDD  
VDD  
M0_CLS  
M0_LINK  
M0_DUPLEX  
M1_CLS  
MIR_CTL[3]  
MIR_CTL[2]  
MIR_CTL[1]  
MIR_CTL[0]  
RSTIN#  
M1_LINK  
M1_DUPLEX  
VSS (CORE)  
M0_TXEN  
M0_TXD  
M0_TXCLK  
M0_CRS_DV  
M0_RXD  
M0_RXCLK  
VDD  
M1_TXEN  
M1_TXD  
M1_TXCLK  
M1_CRS_DV  
M1_RXD  
M1_RXCLK  
VSS  
RSTOUT#  
VSS (CORE)  
T_MODE  
TSTOUT[7]  
TSTOUT[6]  
TSTOUT[5]  
TSTOUT[4]  
TSTOUT[3]  
TSTOUT[2]  
TSTOUT[1]  
TSTOUT[0]  
VDD (VORE)  
ACK  
DATA0  
STROBE  
TRUNK_EN  
TEST#  
M2_TXEN  
M2_TXD  
SDA  
SCL  
M2_TXCLK  
M2_CRS_DV  
M2_RXD  
M_MDIO  
VSS  
M_MDC  
M2_RXCLK  
VDD (CORE)  
M3_TXEN  
M3_TXD  
M3_TXCLK  
M3_CRS_DV  
M3_RXD  
M3_RXCLK  
VSS (CORE)  
M2_CLS  
M2_LINK  
M2_DUPLEX  
M3_CLS  
VDD  
M8_REFCLK  
VSS  
M8_SPEED  
M8_DUPLEX  
M8_LINK  
M8_TXD[3]  
M8_TXD[2]  
M8_TXD[1]  
M8_TXD[0]  
M8_TXEN  
VDD  
M8_TXCLK  
VSS (CORE)  
M8_RXD[3]  
Serail Port Interfaces  
M3_LINK  
M3_DUPLEX  
52  
105  
104  
53  
VERTEX NETWORKS, INC.  
29  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
17 DC Electrical Characteristics  
17.1 ABSOLUTE MAXIMUM RATINGS  
Storage Temperature  
Operating Temperature  
-65C to +150C  
0C to +70C  
Supply Voltage VDD with Respect to VSS  
+3.0 V to +3.6 V  
Voltage on 5V Tolerant Input Pins  
Voltage on Other Pins  
-0.5 V to (VDD + 3.3 V)  
-0.5 V to (VDD + 0.3 V)  
Caution: Stresses above those listed may cause permanent device failure. Functionality at or above these limits is  
not implied. Exposure to the Absolute Maximum Ratings for extended periods may affect device reliability.  
17.2 DC ELECTRICAL CHARACTERISTICS  
VDD = 3.0 V to 3.6 V (3.3v +/- 10%)  
TAMBIENT = 0 C to +70 C  
PRELIMINARY  
MIN TYP. MAX  
66 80  
SYMBOL PARAMETER DESCRIPTION  
UNIT  
fosc  
Frequency of Operation  
50  
MHz  
mA  
V
IDD  
VOH  
VOL  
Supply Current – @ 80 MHz (VDD =3.3 V)  
Output High Voltage (CMOS)  
Output Low Voltage (CMOS)  
TBD  
VDD - 0.5  
0.5  
V
VIH-TTL  
Input High Voltage (TTL 5V tolerant)  
VDD x  
70%  
VDD +  
2.0  
V
VIL-TTL  
IIH-5VT  
Input Low Voltage (TTL 5V tolerant)  
VDD x  
30%  
TBD  
V
Input Leakage Current (0.1 V < VIN < VDD)  
(all pins except those with internal pull-  
up/pull-down resistors)  
mA  
IIL-5VT  
ILI  
Output Leakage Current (0.1 V < VOUT < VDD)  
Input Leakage Current VIH = VDD - 0.1 V  
(pins with internal pull-down resistors)  
Input Leakage Current VIL = 0.1 V  
(pins with internal pull-up resistors)  
Input Capacitance  
TBD  
TBD  
mA  
mA  
ILO  
TBD  
mA  
CIN  
COUT  
CI/O  
5
5
7
pF  
pF  
pF  
Output Capacitance  
I/O Capacitance  
VERTEX NETWORKS, INC.  
30  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
17.3 CLOCK FREQUENCY SPECIFICATIONS  
Symbol  
Parameter  
(Hz)  
Note:  
C1  
C2  
C3  
C4  
C5  
C6  
SCLK – Core System Clock Input  
M_CLK – RMII Port Clock  
50M  
50M  
25M  
M8_REFCLK – MII Reference Clock  
L_CLK – Frame Buffer Memory Clock  
M_MDC – MII Management Data Clock  
SCL – I2C Data Clock  
55M L_CLK = SCLK  
1.56M M_MDC=SCLK/32  
50K SCL=M_CLK/1000  
Suggestion Clock rate for various configurations:  
Input  
Output  
M_CLK  
(RMII)  
Configuration  
SCLK  
M8_REF L_CLK  
M_MDC  
SCL  
Port0-7 Port 8  
10M RMII 10/100M 50M  
MII  
50M  
50M  
50M  
--  
=SCLK  
=SCLK  
=SCLK  
=SCLK  
=SCLK  
=SCLK  
=SCLK/32  
=SCLK/32  
=SCLK/32  
=SCLK/32  
=SCLK/32  
=SCLK/32  
50K  
50K  
50K  
50K  
50K  
50K  
100M  
RMII  
100M  
RMII  
100M  
RMII  
100M  
RMII  
100M  
RMII  
Not  
Used  
10/100M 60M  
MII  
200M  
MII  
300M  
MII  
400M  
MII  
55M  
--  
25M  
50M  
75M  
100M  
66.66M 50M  
75M  
80M  
50M  
50M  
VERTEX NETWORKS, INC.  
31  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
17.4 AC TIMING CHARACTERISTICS  
17.4.1 FRAME BUFFER MEMORY INTERFACE:  
L_CLK  
L1  
L2  
L_D[31:0]  
L_CLK  
L_D[31:0]  
L_A[18:2]  
L3-max  
L3-min  
L4-max  
L4-min  
L6-max  
L6-min  
L_ADSC#  
L8-max  
L8-min  
L_WE#  
L_OE#  
L9-max  
L9-min  
17.5 FRAME BUFFER MEMORY INTERFACE TIMING  
50 MHz  
Symbol  
L1  
Parameter  
L_D[31:0] input set-up time  
L_D[31:0] input hold time  
L_D[31:0] output valid delay  
L_A[18:2] output valid delay  
L_ADSC# output valid delay  
L_WE# output valid delay  
L_OE# output valid delay  
Min (ns) Max (ns)  
Note:  
5
0
L2  
L3  
1
1
1
1
1
8
8
8
8
8
CL = 30pf  
CL = 50pf  
CL = 50pf  
CL = 30pf  
CL = 30pf  
L4  
L6  
L8  
L9  
VERTEX NETWORKS, INC.  
32  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
17.6 SERIAL TIMING REQUIREMENTS  
50 MHZ  
SYMBOL  
M1  
PARAMETER  
Min (ns) Max (ns)  
NOTE:  
M_CLK  
Reference Input  
Clock  
M2  
M3  
M4  
M5  
M6  
M7  
M[7:0]_RXD[1:0] Input Setup Time  
M[7:0]_RXD[1:0] Input Hold Time  
M[7:0]_CRS_DV Input Setup Time  
M[7:0]_TXEN Output Delay Time  
M[7:0]_TXD[1:0] Output Delay Time  
M[7:0]_LINK Input Setup Time  
4
1
4
1
1
11  
11  
CL = 30 pF  
CL = 30 pF  
17.7 RMII TIMING REQUIREMENTS  
50 MHZ  
SYMBOL  
M1  
PARAMETER  
Min (ns) Max (ns)  
NOTE:  
M_CLK  
Reference Input  
Clock  
M2  
M3  
M4  
M5  
M6  
M7  
M[7:0]_RXD[1:0] Input Setup Time  
M[7:0]_RXD[1:0] Input Hold Time  
M[7:0]_CRS_DV Input Setup Time  
M[7:0]_TXEN Output Delay Time  
M[7:0]_TXD[1:0] Output Delay Time  
M[7:0]_LINK Input Setup Time  
4
1
4
1
1
11  
11  
CL = 30 pF  
CL = 30 pF  
VERTEX NETWORKS, INC.  
33  
Ver 1.22  
VTX1100  
Advanced Datasheet  
8 +1 -port HomePNA ETHERNET PACKET CONCENTRATOR  
“Preparing Networks for Convergence”  
November, 1999  
18 Packaging  
VTX1100 is packaged in a 208 pin PQFP (dimensions in mm).  
30.6 ± 0.20  
25.2 REF  
208  
157  
156  
1
Pin 1 I.D.  
25.2  
28.0  
30.6  
A
B
REF ± 0.20 ± 0.20  
52  
105  
53  
104  
0.50  
typ  
0.20  
-.03/+.07  
D
28.0 ± 0.20  
3.40  
± 0.20  
4.10  
MAX.  
C
0.25  
MIN.  
1.30 REF.  
0.50/0.75  
Ordering Information  
Part Number  
Description  
Identification  
Vertex Networks  
Use  
Revision  
8-Port Ethernet Packet  
Concentrator  
VTX1100  
C 0 P  
TAV  
rrr  
Environmental – C = Commercial  
I = Industrial  
Revision - 001 = Rev.1  
For latest revision, leave blank  
Not used, leave as “0”  
Package -  
P= PQFP  
VERTEX NETWORKS, INC.  
34  
Ver 1.22  
厂商 型号 描述 页数 下载

CPI

VTX-6264D2X VTX - 6264D2X , 400 W,X波段行波管螺旋[ VTX-6264D2X, 400 W, X-Band Helix TWT ] 1 页

CPI

VTX-6361F1 750 W,X波段螺旋TWT系列[ 750 W, X-Band Helix TWT Series ] 1 页

CPI

VTX-6361P1 750 W,X波段螺旋TWT系列[ 750 W, X-Band Helix TWT Series ] 1 页

CPI

VTX-6379E1 双C / X波段螺旋TWT系列[ DUAL C/X-Band Helix TWT Series ] 1 页

CPI

VTX-6379E1_12 双C / X波段螺旋TWT系列[ Dual C/X-Band Helix TWT Series ] 1 页

CPI

VTX-6389A2 1.2千瓦,连续波行波放大器[ 1.2 kW, CW Traveling-Wave Amplifier ] 2 页

CPI

VTX-6389G4 2.5千瓦的X波段行波管螺旋系列[ 2.5kW X-Band Helix TWT Series ] 1 页

CPI

VTX-6389G5 2.5千瓦的X波段行波管螺旋系列[ 2.5kW X-Band Helix TWT Series ] 1 页

CPI

VTX-6389L3 2.5千瓦的X波段行波管螺旋系列[ 2.5kW X-Band Helix TWT Series ] 1 页

CPI

VTX5682A 脉冲耦合腔行波管[ Pulsed Coupled Cavity TWT ] 1 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.244439s