找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

2SK2358

型号:

2SK2358

品牌:

RENESAS[ RENESAS TECHNOLOGY CORP ]

页数:

8 页

PDF大小:

61 K

DATA SHEET  
MOS FIELD EFFECT TRANSISTOR  
2SK2357/2SK2358  
SWITCHING  
N-CHANNEL POWER MOS FET  
INDUSTRIAL USE  
DESCRIPTION  
PACKAGE DIMENSIONS  
The 2SK2357/2SK2358 is N-Channel MOS Field Effect Transistor  
designed for high voltage switching applications.  
(in millimeters)  
4.5 ±0.2  
10.0 ±0.3  
3.2 ±0.2  
FEATURES  
2.7 ±0.2  
Low On-Resistance  
2SK2357: RDS(on) = 0.9 (VGS = 10 V, ID = 3.0 A)  
2SK2358: RDS(on) = 1.0 (VGS = 10 V, ID = 3.0 A)  
Low Ciss  
Ciss = 1050 pF TYP.  
High Avalanche Capability Ratings  
Isolate TO-220 Package  
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)  
Drain to Source Voltage (2SK2357/2358)  
VDSS  
VGSS  
ID(DC)  
ID(pulse)  
PT1  
450/500  
V
V
Gate to Source Voltage  
±30  
0.7 ±0.1  
2.54  
1.3 ±0.2  
2.5 ±0.1  
Drain Current (DC)  
±6.0  
±24  
A
1.5 ±0.2  
0.65 ±0.1  
Drain Current (pulse)*  
A
2.54  
Total Power Dissipation (Tc = 25 ˚C)  
Total Power Dissipation (Ta = 25 ˚C)  
Channel Temperature  
35  
W
W
°C  
1. Gate  
2. Drain  
3. Source  
PT2  
2.0  
Tch  
150  
Storage Temperature  
Tstg –55 to +150 °C  
1
2 3  
Single Avalanche Current**  
Single Avalanche Energy**  
IAS  
6.0  
17  
A
EAS  
mJ  
MP-45F (ISOLATED TO-220)  
Drain  
*
PW 10 µs, Duty Cycle 1 %  
** Starting Tch = 25 ˚C, RG = 25 , VGS = 20 V 0  
Body  
Diode  
Gate  
Source  
The information in this document is subject to change without notice.  
Document No. D11392EJ3V0DS00 (3rd edition)  
(Previous No. TC-2498)  
Date Published March 1998 N CP(K)  
Printed in Japan  
1994  
©
2SK2357/2SK2358  
ELECTRICAL CHARACTERISTICS (TA = 25 °C)  
CHARACTERISTIC  
SYMBOL  
MIN.  
TYP.  
0.7  
MAX.  
0.9  
UNIT  
TEST CONDITIONS  
Drain to Source On-Resistance  
RDS(on)  
VGS = 10 V  
ID = 3.0 A  
2SK2357  
2SK2358  
0.8  
1.0  
Gate to Source Cutoff Voltage  
Forward Transfer Admittance  
Drain Leakage Current  
Gate to Source Leakage Current  
Input Capacitance  
VGS(off)  
| yfs |  
IDSS  
IGSS  
Ciss  
Coss  
Crss  
td(on)  
tr  
2.5  
3.0  
3.5  
V
VDS = 10 V, ID = 1 mA  
VDS = 10 V, ID = 3.0 A  
VDS = VDSS, VGS = 0  
VGS = ±30 V, VDS = 0  
VDS = 10 V  
S
µA  
100  
±100  
nA  
pF  
pF  
pF  
ns  
ns  
ns  
ns  
nC  
nC  
nC  
V
1050  
200  
26  
Output Capacitance  
VGS = 0  
Reverse Transfer Capacitance  
Turn-On Delay Time  
f = 1 MHz  
14  
ID = 3.0 A  
Rise Time  
9
VGS(on) = 10 V  
Turn-Off Delay Time  
td(off)  
tf  
56  
VDD = 150 V  
RG = 10 RL = 50 Ω  
Fall Time  
14  
Total Gate Charge  
QG  
27  
ID = 6.0 A  
Gate to Source Charge  
Gate to Drain Charge  
Body Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
QGS  
QGD  
VF(S-D)  
trr  
5.5  
12  
VDD = 400 V  
VGS = 10 V  
1.0  
300  
1.5  
IF = 6.0 A, VGS = 0  
ns  
nC  
IF = 6.0 A, VGS = 0  
di/dt = 50 A/µs  
Qrr  
Test Circuit 1 Avalanche Capability  
Test Circuit 2 Switching Time  
D.U.T.  
D.U.T.  
R
L
L
R
G
= 25 Ω  
V
GS  
90 %  
GS (on)  
V
GS  
V
10 %  
Wave  
Form  
R
G
0
PG  
GS = 20 - 0 V  
V
DD  
PG.  
R = 10 Ω  
G
50 Ω  
V
DD  
V
90 %  
I
D
90 %  
10 %  
I
D
V
GS  
10 %  
0
I
D
BVDSS  
Wave  
Form  
0
I
AS  
V
DS  
t
d (on)  
t
r
t
d (off)  
t
f
I
D
t
V
DD  
t
on  
t
off  
t = 1 µs  
Duty Cycle 1 %  
Starting Tch  
Test Circuit 3 Gate Charge  
D.U.T.  
RL  
IG  
= 2 mA  
VDD  
PG.  
50 Ω  
The application circuits and their parameters are for references only and are not intended for use in actual design-in's.  
2
2SK2357/2SK2358  
TYPICAL CHARACTERISTICS (TA = 25 °C)  
DERATING FACTOR OF FORWARD BIAS  
SAFE OPERATING AREA  
TOTAL POWER DISSIPATION vs.  
CASE TEMPERATURE  
50  
40  
30  
100  
80  
60  
40  
20  
20  
10  
0
20  
40  
60  
80 100 120 140 160  
0
20  
40  
60  
80 100 120 140 160  
T
c
- Case Temperature - °C  
Tc  
- Case Temperature - °C  
DRAIN CURRENT vs.  
DRAIN TO SOURCE VOLTAGE  
FORWARD BIAS SAFE OPERATING AREA  
100  
Pulsed  
10  
8
VGS = 20 V  
I
D (pulse)  
10 V  
8 V  
6 V  
µ
µ
10  
1.0  
0.1  
I
D (DC)  
6
4
2
T
c
= 25 °C  
Single Pulse  
0
4
8
12  
16  
0.1  
10  
100  
1000  
V
DS - Drain to Source Voltage - V  
V
DS - Drain to Source Voltage - V  
DRAIN CURRENT vs.  
GATE TO SOURCE VOLTAGE  
50  
10  
Pulsed  
1
T
a
= –25 °C  
25 °C  
75 °C  
125 °C  
0.1  
0.05  
0
5
10  
15  
V
GS - Gate to Source Voltage - V  
3
2SK2357/2SK2358  
TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH  
1000  
100  
Rth(ch-a) = 62.5 °C/W  
10  
1
Rth(ch-c) = 3.57 °C/W  
0.1  
TC = 25 °C  
Single Pulse  
0.01  
10µ  
100 µ  
1 m  
10 m  
100 m  
1
10  
100  
1000  
PW - Pulse Width - s  
DRAIN TO SOURCE ON-STATE RESISTANCE vs.  
GATE TO SOURCE VOLTAGE  
FORWARD TRANSFER ADMITTANCE vs.  
DRAIN CURRENT  
100  
10  
1.5  
1.0  
0.5  
VDS = 10 V  
Pulsed  
Pulsed  
Ta = –25 °C  
25 °C  
75 °C  
125 °C  
ID = 6 A  
ID = 3 A  
1.0  
0.1  
1.0  
10  
100  
0
10  
20  
30  
ID - Drain Current - A  
VGS - Gate to Source Voltage - V  
DRAIN TO SOURCE ON-STATE  
RESITANCE vs. DRAIN CURRENT  
GATE TO SOURCE CUTOFF VOLTAGE vs.  
CHANNEL TEMPERATURE  
3.0  
Pulsed  
VDS = 10 V  
ID = 1 mA  
4.0  
3.0  
2.0  
1.0  
0
2.0  
1.0  
0
1.0  
10  
100  
–50  
0
50  
100  
150  
ID - Drain Current - A  
Tch - Channel Temperature - °C  
4
2SK2357/2SK2358  
SOURCE TO DRAIN DIODE  
FORWARD VOLTAGE  
DRAIN TO SOURCE ON-STATE RESISTANCE vs.  
CHANNEL TEMPERATURE  
50  
10  
Pulsed  
1.6  
1.2  
0.8  
0.4  
0
I
D
= 6 A  
3 A  
10 V  
V
GS = 0  
1.0  
0.1  
V
GS = 10 V  
0.05  
1.5  
0
0.5  
1.0  
–50  
0
50  
100  
150  
V
SD - Source to Drain Voltage - V  
T
ch - Channel Temperature - °C  
CAPACITANCE vs. DRAIN TO  
SOURCE VOLTAGE  
SWITCHING CHARACTERISTICS  
5 000  
1 000  
1000  
V
GS = 0  
f = 1.0 MHz  
t
r
Ciss  
t
f
100  
10  
t
d(on)  
d(off)  
Coss  
t
100  
Crss  
V
DD = 150 V  
GS = 10 V  
V
10  
5
R
G
= 25 Ω  
0.5  
0.1  
1.0  
10  
100  
1
10  
100  
1000  
ID  
- Drain Current - A  
VDS - Drain to Source Voltage - V  
REVERSE RECOVERY TIME vs.  
DRAIN CURRENT  
DYNAMIC INPUT/OUTPUT CHARACTERISTICS  
800  
600  
400  
400  
16  
di/dt = 50 A/  
s
µ
ID = 6 A  
V
GS = 10 V  
14  
12  
10  
8
V
GS  
V
DD = 400 V  
250 V  
125 V  
300  
200  
100  
6
4
2
0
200  
0
V
DS  
1.0  
10  
- Drain Current - A  
100  
0
10  
20  
30  
40  
Q - Gate Charge - nC  
g
I
D
5
2SK2357/2SK2358  
SINGLE AVALANCHE ENERGY vs  
STARTING CHANNEL TEMPERATURE  
SINGLE AVALANCHE CURRENT vs  
INDUCTIVE LOAD  
100  
10  
20  
R
G
= 25 Ω  
DD = 150 V  
GS = 20 V 0  
Starting Tch = 25°C  
I
D(peak) = IAS  
V
R
G
= 25 Ω  
V
V
V
GS = 20 V 0 V  
DD = 150 V  
15  
10  
5
E
AS = 17 mJ  
I
AS = 6.0 A  
1.0  
100µ  
1.0 m  
10 m  
100 m  
25  
50  
75  
100  
125  
150  
175  
Starting Tch - Starting Channel Temperature - °C  
L - Inductive Load - H  
6
2SK2357/2SK2358  
REFERENCE  
Document Name  
Document No.  
C11745E  
C11531E  
C10535E  
C10943X  
MEI-1202  
X10679E  
D12971E  
D12972E  
D13085E  
NEC semiconductor device reliability/quality control system.  
Quality grades on NEC semiconductor devices.  
Semiconductor device mounting technology manual.  
IC package manual.  
Guide to quality assurance for semiconductor devices.  
Semiconductor selection guide.  
Power MOS FET features and application switching to power supply.  
Application circuits using Power MOS FET.  
Safe operating area of Power MOS FET.  
The diode connected between the gate and source of the transistor serves as a protector against ESD. When this  
device is actually used, an additional protection circuit is externally required if a voltage exceeding the  
rated voltage may be applied to this device.  
7
2SK2357/2SK2358  
[MEMO]  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96.5  
厂商 型号 描述 页数 下载

PANASONIC

2SK0065 为在低频率阻抗变换[ For Impedance Conversion In Low Frequency ] 3 页

ETC

2SK0065(2SK65) 小信号デバイス - 小信号FET - 接合形场效应管\n[ 小信号デバイス - 小信号FET - 接合形FET ] 3 页

ETC

2SK0065P 晶体管| JFET | N沟道| 12V V( BR ) DSS | 40uA的我( DSS ) | SPAKVAR\n[ TRANSISTOR | JFET | N-CHANNEL | 12V V(BR)DSS | 40UA I(DSS) | SPAKVAR ] 3 页

ETC

2SK0065Q 晶体管| JFET | N沟道| 12V V( BR ) DSS | 150UA我( DSS ) | SPAKVAR\n[ TRANSISTOR | JFET | N-CHANNEL | 12V V(BR)DSS | 150UA I(DSS) | SPAKVAR ] 3 页

PANASONIC

2SK0123 为在低频率阻抗变换[ For Impedance Conversion In Low Frequency ] 3 页

ETC

2SK0123(2SK123) 小信号器件 - 小信号场效应管 - 场效应管结\n[ Small-signal device - Small-signal FETs - Junction FETs ] 3 页

PANASONIC

2SK0198 对于低频放大[ For Low-Frequency Amplification ] 3 页

ETC

2SK0198(2SK198) 2SK0198 ( 2SK198 ) - N沟道结型场效应管\n[ 2SK0198 (2SK198) - N-Channel Junction FET ] 3 页

PANASONIC

2SK0198P [ Small Signal Field-Effect Transistor, 0.02A I(D), 30V, 1-Element, N-Channel, Silicon, Junction FET, TO-236, ROHS COMPLIANT, MINI3-G1, SC-59, 3 PIN ] 3 页

PANASONIC

2SK0198Q [ Small Signal Field-Effect Transistor, 0.02A I(D), 30V, 1-Element, N-Channel, Silicon, Junction FET, TO-236, ROHS COMPLIANT, MINI3-G1, SC-59, 3 PIN ] 3 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.202533s