找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

TL494

型号:

TL494

描述:

开关模式脉宽调制控制电路[ SWITCHMODE PULSE WIDTH MODULATION CONTROL CIRCUIT ]

品牌:

MOTOROLA[ MOTOROLA ]

页数:

12 页

PDF大小:

201 K

Order this document by TL494/D  
SWITCHMODE  
PULSE WIDTH MODULATION  
CONTROL CIRCUIT  
The TL494 is a fixed frequency, pulse width modulation control circuit  
designed primarily for SWITCHMODE power supply control.  
Complete Pulse Width Modulation Control Circuitry  
On–Chip Oscillator with Master or Slave Operation  
On–Chip Error Amplifiers  
SEMICONDUCTOR  
TECHNICAL DATA  
On–Chip 5.0 V Reference  
Adjustable Deadtime Control  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751B  
Uncommitted Output Transistors Rated to 500 mA Source or Sink  
Output Control for Push–Pull or Single–Ended Operation  
Undervoltage Lockout  
(SO–16)  
N SUFFIX  
PLASTIC PACKAGE  
CASE 648  
PIN CONNECTIONS  
Noninv  
Input  
Noninv  
Input  
1
2
+
+
16  
15  
Error  
Error  
MAXIMUM RATINGS (Full operating ambient temperature range applies,  
unless otherwise noted.)  
1
2
Amp  
Amp  
Inv  
Input  
Inv  
Input  
V
CC  
Compen/PWN  
Comp Input  
5.0 V  
REF  
Rating  
Power Supply Voltage  
Collector Output Voltage  
Symbol TL494C TL494I  
Unit  
V
3
4
14  
13  
V
ref  
0.1 V  
V
42  
42  
Deadtime  
Control  
Output  
Control  
CC  
V
C1  
,
V
C
T
5
12  
V
V
CC  
C2  
Oscillator  
Collector Output Current  
(Each transistor) (Note 1)  
I
, I  
500  
mA  
R
T
6
7
11 C2  
10 E2  
C1 C2  
Q2  
Ground  
C1  
Amplifier Input Voltage Range  
V
IR  
–0.3 to +42  
1000  
V
Q1  
8
9
E1  
Power Dissipation @ T 45°C  
P
D
mW  
°C/W  
A
Thermal Resistance,  
Junction–to–Ambient  
R
80  
θJA  
(Top View)  
Operating Junction Temperature  
Storage Temperature Range  
T
125  
°C  
°C  
°C  
J
T
stg  
–55 to +125  
ORDERING INFORMATION  
Operating  
Operating Ambient Temperature Range  
T
A
TL494C  
TL494I  
0 to +70  
25 to +85  
Temperature Range  
Device  
TL494CD  
TL494CN  
TL494IN  
Package  
SO–16  
Plastic  
T
A
= 0° to +70°C  
Derating Ambient Temperature  
T
A
45  
°C  
NOTE: 1. Maximum thermal limits must be observed.  
T
A
= – 25° to +85°C  
Plastic  
Motorola, Inc. 1996  
Rev 1  
TL494  
RECOMMENDED OPERATING CONDITIONS  
Characteristics  
Symbol  
Min  
7.0  
Typ  
15  
30  
Max  
40  
Unit  
V
Power Supply Voltage  
V
CC  
Collector Output Voltage  
Collector Output Current (Each transistor)  
Amplified Input Voltage  
V
I
, V  
40  
V
C1 C2  
, I  
200  
mA  
V
C1 C2  
V
–0.3  
V
– 2.0  
in  
fb  
CC  
Current Into Feedback Terminal  
Reference Output Current  
Timing Resistor  
l
0.3  
10  
mA  
mA  
kΩ  
µF  
kHz  
l
ref  
R
1.8  
0.0047  
1.0  
30  
0.001  
40  
500  
10  
T
T
Timing Capacitor  
C
Oscillator Frequency  
f
200  
osc  
ELECTRICAL CHARACTERISTICS (V  
CC  
= 15 V, C = 0.01 µF, R = 12 k, unless otherwise noted.)  
T T  
For typical values T = 25°C, for min/max values T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
REFERENCE SECTION  
Reference Voltage (I = 1.0 mA)  
V
4.75  
5.0  
2.0  
3.0  
35  
5.25  
25  
V
O
ref  
Line Regulation (V  
= 7.0 V to 40 V)  
Load Regulation (I = 1.0 mA to 10 mA)  
Reg  
mV  
mV  
mA  
CC  
line  
Reg  
15  
O
load  
Short Circuit Output Current (V = 0 V)  
ref  
I
15  
75  
SC  
OUTPUT SECTION  
Collector Off–State Current  
I
2.0  
100  
µA  
µA  
V
C(off)  
(V  
CC  
= 40 V, V  
= 40 V)  
CE  
Emitter Off–State Current  
= 40 V, V = 40 V, V = 0 V)  
I
–100  
E(off)  
V
CC  
Collector–Emitter Saturation Voltage (Note 2)  
Common–Emitter (V = 0 V, I = 200 mA)  
C
E
V
V
1.1  
1.5  
1.3  
2.5  
E
C
E
sat(C)  
sat(E)  
Emitter–Follower (V = 15 V, I = 200 mA)  
C
Output Control Pin Current  
Low State (V  
0.4 V)  
I
I
10  
0.2  
3.5  
µA  
mA  
OC  
High State (V  
OCL  
OCH  
= V )  
ref  
OC  
Output Voltage Rise Time  
Common–Emitter (See Figure 12)  
Emitter–Follower (See Figure 13)  
t
r
ns  
100  
100  
200  
200  
Output Voltage Fall Time  
Common–Emitter (See Figure 12)  
Emitter–Follower (See Figure 13)  
t
f
ns  
25  
40  
100  
100  
NOTE: 2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.  
2
MOTOROLA ANALOG IC DEVICE DATA  
TL494  
ELECTRICAL CHARACTERISTICS (V  
CC  
= 15 V, C = 0.01 µF, R = 12 k, unless otherwise noted.)  
T T  
For typical values T = 25°C, for min/max values T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Characteristics  
ERROR AMPLIFIER SECTION  
Symbol  
Min  
Typ  
Max  
Unit  
Input Offset Voltage (V  
Input Offset Current (V  
= 2.5 V)  
= 2.5 V)  
V
2.0  
5.0  
10  
mV  
nA  
O (Pin 3)  
IO  
I
IO  
250  
–1.0  
O (Pin 3)  
Input Bias Current (V  
= 2.5 V)  
I
IB  
–0.1  
µA  
O (Pin 3)  
Input Common Mode Voltage Range (V  
= 40 V, T = 25°C)  
V
ICR  
–0.3 to V –2.0  
CC  
V
CC  
A
Open Loop Voltage Gain (V = 3.0 V, V = 0.5 V to 3.5 V, R = 2.0 kΩ)  
A
VOL  
70  
95  
350  
65  
dB  
O
O
L
Unity–Gain Crossover Frequency (V = 0.5 V to 3.5 V, R = 2.0 k)  
f
C–  
kHz  
deg.  
dB  
O
L
Phase Margin at Unity–Gain (V = 0.5 V to 3.5 V, R = 2.0 k)  
φ
m
O
L
Common Mode Rejection Ratio (V  
= 40 V)  
CMRR  
65  
90  
CC  
Power Supply Rejection Ratio (V  
= 33 V, V = 2.5 V, R = 2.0 k)  
PSRR  
100  
0.7  
–4.0  
dB  
CC  
O
L
Output Sink Current (V  
O (Pin 3)  
= 0.7 V)  
= 3.5 V)  
I
0.3  
2.0  
mA  
mA  
O–  
Output Source Current (V  
I
O
+
O (Pin 3)  
PWM COMPARATOR SECTION (Test Circuit Figure 11)  
Input Threshold Voltage (Zero Duty Cycle)  
V
2.5  
0.7  
4.5  
V
TH  
Input Sink Current (V  
= 0.7 V)  
I
0.3  
mA  
(Pin 3)  
DEADTIME CONTROL SECTION (Test Circuit Figure 11)  
Input Bias Current (Pin 4) (V = 0 V to 5.25 V)  
I–  
I
–2.0  
–10  
µA  
Pin 4  
Maximum Duty Cycle, Each Output, Push–Pull Mode  
IB (DT)  
DC  
%
max  
(V  
Pin 4  
(V  
Pin 4  
= 0 V, C = 0.01 µF, R = 12 k)  
45  
48  
45  
50  
50  
T
T
= 0 V, C = 0.001 µF, R = 30 k)  
T
T
Input Threshold Voltage (Pin 4)  
(Zero Duty Cycle)  
(Maximum Duty Cycle)  
V
th  
V
0
2.8  
3.3  
OSCILLATOR SECTION  
Frequency (C = 0.001 µF, R = 30 k)  
f
40  
3.0  
0.1  
kHz  
%
T
T
osc  
Standard Deviation of Frequency* (C = 0.001 µF, R = 30 k)  
σf  
T
T
osc  
Frequency Change with Voltage (V  
= 7.0 V to 40 V, T = 25°C)  
f  
f  
(V)  
%
CC  
A
osc  
osc  
Frequency Change with Temperature (T = T  
to T )  
high  
(T)  
12  
%
A
low  
(C = 0.01 µF, R = 12 k)  
T
T
UNDERVOLTAGE LOCKOUT SECTION  
Turn–On Threshold (V  
increasing, I = 1.0 mA)  
ref  
V
th  
5.5  
6.43  
7.0  
V
CC  
TOTAL DEVICE  
Standby Supply Current (Pin 6 at V , All other inputs and outputs open)  
I
mA  
ref  
CC  
(V  
CC  
(V  
CC  
= 15 V)  
= 40 V)  
5.5  
7.0  
10  
15  
Average Supply Current  
mA  
(C = 0.01 µF, R = 12 k, V  
= 2.0 V)  
7.0  
T
T
(Pin 4)  
(V  
CC  
= 15 V) (See Figure 12)  
N
2
Σ (X – X)  
n
* Standard deviation is a measure of the statistical distribution about the mean as derived from the formula, σ  
n = 1  
N – 1  
3
MOTOROLA ANALOG IC DEVICE DATA  
TL494  
Figure 1. Representative Block Diagram  
V
Output Control  
13  
CC  
8
9
6
5
D
Q
Q
Q1  
Q2  
Oscillator  
Flip–  
Flop  
R
T
C
Deadtime  
Comparator  
T
11  
10  
Ck  
+
0.12V  
0.7V  
4
Deadtime  
Control  
+
12  
V
CC  
+
4.9V  
PWM  
Comparator  
0.7mA  
UV  
Lockout  
Reference  
Regulator  
+
+
+
1
2
3.5V  
1
2
3
15  
16  
14  
7
Gnd  
Error Amp  
1
Feedback PWM  
Comparator Input  
Error Amp  
2
Ref.  
Output  
This device contains 46 active transistors.  
Figure 2. Timing Diagram  
Capacitor C  
T
Feedback/PWM Comp.  
Deadtime Control  
Flip–Flop  
Clock Input  
Flip–Flop  
Q
Flip–Flop  
Q
Output Q1  
Emitter  
Output Q2  
Emitter  
Output  
Control  
4
MOTOROLA ANALOG IC DEVICE DATA  
TL494  
APPLICATIONS INFORMATION  
Description  
may be used to sense power–supply output voltage and  
current. The error–amplifier outputs are active high and are  
ORed together at the noninverting input of the pulse–width  
modulator comparator. With this configuration, the amplifier  
that demands minimum output on time, dominates control of  
the loop.  
The TL494 is a fixed–frequency pulse width modulation  
control circuit, incorporating the primary building blocks  
required for the control of a switching power supply. (See  
Figure 1.) An internal–linear sawtooth oscillator is frequency–  
programmable by two external components, R and C . The  
T
T
When capacitor C is discharged, a positive pulse is  
approximate oscillator frequency is determined by:  
T
generated on the output of the deadtime comparator, which  
clocks the pulse–steering flip–flop and inhibits the output  
transistors, Q1 and Q2. With the output–control connected to  
the reference line, the pulse–steering flip–flop directs the  
modulated pulses to each of the two output transistors  
alternately for push–pull operation. The output frequency is  
equal to half that of the oscillator. Output drive can also be  
taken from Q1 or Q2, when single–ended operation with a  
maximum on–time of less than 50% is required. This is  
desirable when the output transformer has a ringback  
winding with a catch diode used for snubbing. When higher  
output–drive currents are required for single–ended  
operation, Q1 and Q2 may be connected in parallel, and the  
output–mode pin must be tied to ground to disable the  
flip–flop. The output frequency will now be equal to that of the  
oscillator.  
1.1  
f
osc  
R
C  
T
T
For more information refer to Figure 3.  
Output pulse width modulation is accomplished by  
comparison of the positive sawtooth waveform across  
capacitor C to either of two control signals. The NOR gates,  
which drive output transistors Q1 and Q2, are enabled only  
when the flip–flop clock–input line is in its low state. This  
happens only during that portion of time when the sawtooth  
voltage is greater than the control signals. Therefore, an  
increase in control–signal amplitude causes a corresponding  
linear decrease of output pulse width. (Refer to the Timing  
Diagram shown in Figure 2.)  
T
The TL494 has an internal 5.0 V reference capable of  
sourcing up to 10 mA of load current for external bias circuits.  
The reference has an internal accuracy of ±5.0% with a  
typical thermal drift of less than 50 mV over an operating  
temperature range of 0° to 70°C.  
The control signals are external inputs that can be fed into  
the deadtime control, the error amplifier inputs, or the  
feedback input. The deadtime control comparator has an  
effective 120 mV input offset which limits the minimum output  
deadtime to approximately the first 4% of the sawtooth–cycle  
time. This would result in a maximum duty cycle on a given  
output of 96% with the output control grounded, and 48% with  
it connected to the reference line. Additional deadtime may  
be imposed on the output by setting the deadtime–control  
input to a fixed voltage, ranging between 0 V to 3.3 V.  
Figure 3. Oscillator Frequency versus  
Timing Resistance  
500 k  
Functional Table  
V
= 15 V  
CC  
C
= 0.001 µF  
T
100 k  
10 k  
f
Input/Output  
Controls  
out  
Output Function  
=
f
osc  
Grounded  
Single–ended PWM @ Q1 and Q2  
Push–pull Operation  
1.0  
0.5  
0.01 µF  
@ V  
ref  
The pulse width modulator comparator provides a means  
for the error amplifiers to adjust the output pulse width from  
the maximum percent on–time, established by the deadtime  
control input, down to zero, as the voltage at the feedback pin  
varies from 0.5 V to 3.5 V. Both error amplifiers have a  
0.1 µF  
1.0 k  
500  
1.0 k 2.0 k 5.0 k  
10 k 20 k 50 k  
100 k 200 k  
500 k 1.0 M  
R
TIMING RESISTANCE ()  
T,  
common mode input range from –0.3 V to (V  
– 2V), and  
CC  
5
MOTOROLA ANALOG IC DEVICE DATA  
TL494  
Figure 4. Open Loop Voltage Gain and  
Phase versus Frequency  
Figure 5. Percent Deadtime versus  
Oscillator Frequency  
120  
110  
100  
90  
20  
18  
16  
14  
V
R
= 15 V  
= 3.0 V  
= 2.0 kΩ  
CC  
V
O
0
C
= 0.001 µF  
T
L
80  
70  
60  
50  
40  
20  
40  
A
VOL  
12  
10  
60  
80  
100  
8.0  
6.0  
4.0  
φ
30  
20  
10  
0
0.001 µF  
120  
140  
160  
180  
2.0  
0
1.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
500 k 1.0 k  
10 k  
100 k  
500 k  
f, FREQUENCY (Hz)  
f
, OSCILLATOR FREQUENCY (Hz)  
osc  
Figure 7. Emitter–Follower Configuration  
Output Saturation Voltage versus  
Emitter Current  
Figure 6. Percent Duty Cycle versus  
Deadtime Control Voltage  
50  
40  
30  
20  
10  
0
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
V
V
= 15 V  
CC  
OC  
= V  
2
ref  
1. C = 0.01  
µ
F
T
2. R = 10 k  
T
2. C = 0.001 µF  
T
2. R = 30 k  
T
0
1.0  
2.0  
3.0  
3.5  
0
100  
200  
300  
400  
V
, DEADTIME CONTROL VOLTAGE (IV)  
I
EMITTER CURRENT (mA)  
DT  
E,  
Figure 8. Common–Emitter Configuration  
Output Saturation Voltage versus  
Collector Current  
Figure 9. Standby Supply Current  
versus Supply Voltage  
10  
9.0  
8.0  
7.0  
6.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
5.0  
4.0  
3.0  
2.0  
1.0  
0
0
5.0  
10  
15  
20  
25  
30  
35  
40  
0
100  
200  
300  
400  
I
, COLLECTOR CURRENT (mA)  
V , SUPPLY VOLTAGE (V)  
CC  
C
6
MOTOROLA ANALOG IC DEVICE DATA  
TL494  
Figure 10. Error–Amplifier Characteristics  
Figure 11. Deadtime and Feedback Control Circuit  
V
= 15V  
CC  
150  
2W  
150  
2W  
Error Amplifier  
Under Test  
+
V
CC  
V
in  
Deadtime  
C1  
E1  
Output 1  
Test  
Inputs  
Feedback  
Terminal  
(Pin 3)  
Feedback  
C2  
E2  
Output 2  
R
C
(+)  
(–)  
(+)  
(–)  
T
T
+
Error  
Gnd  
V
ref  
Other Error  
Amplifier  
Ref  
Out  
Output  
Control  
50k  
Figure 12. Common–Emitter Configuration  
Test Circuit and Waveform  
Figure 13. Emitter–Follower Configuration  
Test Circuit and Waveform  
15V  
15V  
R
68  
L
C
V
Each  
Output  
Transistor  
C
C
E
Q
Each  
Output  
Transistor  
C
15pF  
L
V
Q
EE  
E
R
68  
C
15pF  
L
L
90%  
90%  
90%  
90%  
V
EE  
10%  
V
CC  
10%  
10%  
10%  
Gnd  
t
t
f
r
t
t
f
r
7
MOTOROLA ANALOG IC DEVICE DATA  
TL494  
Figure 14. Error–Amplifier Sensing Techniques  
V
ref  
V
O
To Output  
Voltage of  
System  
1
2
+
R2  
R1  
R2  
Error  
Amp  
1
+
Error  
3
Amp  
R1  
Negative Output Voltage  
V
ref  
2
R
R
1
2
V
= V  
ref  
O
V
Positive Output Voltage  
O
To Output  
Voltage of  
System  
R
R
1
2
V
= V  
ref  
1 +  
O
Figure 15. Deadtime Control Circuit  
Figure 16. Soft–Start Circuit  
Output  
Control  
R
1
V
C
ref  
S
V
ref  
Output  
4
Output  
4
Q
D
T
Q
D
T
R
C
T
T
R
2
R
S
5
6
0.001  
45 –  
30k  
80  
Max. % on Time, each output  
R1  
R2  
1 +  
Figure 17. Output Connections for Single–Ended and Push–Pull Configurations  
1
1
C
C
Q
C
2.4 V  
V
V  
OC ref  
Q
1
Q
Q
1.0 mA to 250 mA  
1.0 mA to 250 mA  
1
2
1
1
E
E
Output  
Control  
Output  
Control  
1.0 mA to  
500 mA  
Push–Pull  
Single–Ended  
2
2
C
C
Q
0
V
0.4 V  
OC  
2
2
2
E
E
Q
E
8
MOTOROLA ANALOG IC DEVICE DATA  
TL494  
Figure 18. Slaving Two or More Control Circuits  
Figure 19. Operation with V > 40 V Using  
in  
External Zener  
V
ref  
V
R
CC  
S
12  
V
> 40V  
6
5
in  
R
C
1N975A  
= 39V  
T
Master  
V
Z
5.0V  
Ref  
T
R
T
C
T
270  
Gnd  
7
V
ref  
6
5
R
C
T
Slave  
(Additional  
Circuits)  
T
Figure 20. Pulse Width Modulated Push–Pull Converter  
+V = 8.0V to 20V  
in  
12  
+V = 28 V  
O
I
= 0.2 A  
1N4934  
O
47  
1
V
T
CC  
+
1
8
22  
k
2
Tip  
32  
C
C
1
L
1
1M  
+
33k  
3
TL494  
50  
35V  
Comp  
+
50  
25V  
0.01  
0.01  
15  
11  
Tip  
32  
4.7k  
2
+
50  
16  
+
35V  
1
2
E
OC  
13  
V
DT  
C
R
T
6
Gnd  
7
E
REF  
T
1.0  
47  
1N4934  
14  
4
5
9
10  
+
240  
4.7k  
4.7k  
10  
10k  
15k  
0.001  
All capacitors in µF  
Test  
Conditions  
= 10 V to 40 V  
Results  
L1 – 3.5 mH @ 0.3 A  
T1 – Primary: 20T C.T. #28 AWG  
T1 – Secondary: 12OT C.T. #36 AWG  
T1 – Core: Ferroxcube 1408P–L00–3CB  
Line Regulation  
Load Regulation  
Output Ripple  
V
in  
V
in  
V
in  
V
in  
V
in  
14 mV 0.28%  
3.0 mV 0.06%  
= 28 V, I = 1.0 mA to 1.0 A  
O
= 28 V, I = 1.0 A  
65 mV pp P.A.R.D.  
O
Short Circuit Current  
Efficiency  
= 28 V, R = 0.1 Ω  
1.6 A  
71%  
L
= 28 V, I = 1.0 A  
O
9
MOTOROLA ANALOG IC DEVICE DATA  
TL494  
Figure 21. Pulse Width Modulated Step–Down Converter  
1.0mH @ 2A  
+V = 10V to 40V  
in  
+V = 5.0 V  
Tip 32A  
O
I
= 1.0 A  
O
47  
150  
47k  
12  
0.1  
8
11  
1.0M  
V
C
C
2
3
CC  
1
Comp  
2
5.1k  
5.1k  
1
+
+
50  
50V  
14  
15  
16  
TL494  
V
ref  
+
500  
10V  
MR850  
5.1k  
150  
+
C
R
D.T. O.C. Gnd  
13  
E
E
2
T
T
1
+
50  
10V  
5
6
4
7
9
10  
0.001  
47k  
0.1  
Test  
Conditions  
= 8.0 V to 40 V  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
V
3.0 mV  
5.0 mV  
40 mV pp  
250 mA  
72%  
0.01%  
in  
in  
in  
in  
in  
V
V
V
V
= 12.6 V, I = 0.2 mA to 200 mA  
O
0.02%  
= 12.6 V, I = 200 mA  
P.A.R.D.  
O
Short Circuit Current  
Efficiency  
= 12.6 V, R = 0.1 Ω  
L
= 12.6 V, I = 200 mA  
O
10  
MOTOROLA ANALOG IC DEVICE DATA  
TL494  
OUTLINE DIMENSIONS  
N SUFFIX  
PLASTIC PACKAGE  
CASE 648–08  
ISSUE R  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
1
9
8
B
S
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
0.70  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
0.740  
0.250  
0.145  
0.015  
0.040  
C
L
SEATING  
PLANE  
–T–  
G
H
J
K
L
0.100 BSC  
0.050 BSC  
2.54 BSC  
1.27 BSC  
K
M
0.008  
0.015  
0.130  
0.305  
10  
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295  
0
2.80  
7.50  
0
G
D 16 PL  
M
S
0.020  
0.040  
0.51  
1.01  
M
M
0.25 (0.010)  
T
A
D SUFFIX  
PLASTIC PACKAGE  
CASE 751B–05  
(SO–16)  
–A–  
ISSUE J  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
16  
9
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
–B–  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
M
S
PER SIDE.  
0.25 (0.010)  
B
1
8
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
9.80  
3.80  
1.35  
0.35  
0.40  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
F
0.386  
0.150  
0.054  
0.014  
0.016  
R X 45  
K
C
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
J
M
D
16 PL  
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T
B
A
11  
MOTOROLA ANALOG IC DEVICE DATA  
TL494  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arisingoutof,directlyorindirectly,anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorizeduse,evenifsuchclaimallegesthatMotorola  
was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
re registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
TL494/D  
厂商 型号 描述 页数 下载

TAITRON

TL400 4A整流桥[ 4A Bridge Rectifier ] 5 页

STMICROELECTRONICS

TL4003 [ SILICON CONTROLLED RECTIFIER,400V V(DRM),1.6A I(T),TO-221VAR ] 4 页

STMICROELECTRONICS

TL4006 [ 3A, 400V, SCR ] 1 页

TAITRON

TL400G 4A玻璃钝化整流桥[ 4A Glass Passivated Bridge Rectifier ] 4 页

TAITRON

TL401 4A整流桥[ 4A Bridge Rectifier ] 5 页

TAITRON

TL401G 4A玻璃钝化整流桥[ 4A Glass Passivated Bridge Rectifier ] 4 页

TAITRON

TL402 4A整流桥[ 4A Bridge Rectifier ] 5 页

TAITRON

TL402G 4A玻璃钝化整流桥[ 4A Glass Passivated Bridge Rectifier ] 4 页

TAITRON

TL404 4A整流桥[ 4A Bridge Rectifier ] 5 页

TAITRON

TL404G 4A玻璃钝化整流桥[ 4A Glass Passivated Bridge Rectifier ] 4 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.202401s