找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

8N3S272AC-0126CD

型号:

8N3S272AC-0126CD

品牌:

IDT[ INTEGRATED DEVICE TECHNOLOGY ]

页数:

18 页

PDF大小:

473 K

LVPECL Frequency-Programmable  
Crystal Oscillator  
IDT8N3S272  
DATA SHEET  
General Description  
Features  
The IDT8N3S272 is a Frequency-Programmable Crystal Oscillator  
with very flexible frequency programming capabilities. The device  
uses IDT’s fourth generation FemtoClock® NG technology for an  
optimum of high clock frequency and low phase noise performance.  
The device accepts 2.5V or 3.3V supply and is packaged in a small,  
lead-free (RoHS 6) 6-lead ceramic 5mm x 7mm x 1.55mm package.  
Fourth generation FemtoClock® NG technology  
Factory-programmable clock output frequency from 15.476MHz to  
866.67MHz and from 975MHz to 1,300MHz  
Frequency programming resolution is 218Hz and better  
One 2.5V or 3.3V LVPECL clock output  
Output enable control (positive polarity), LVCMOS/LVTTL  
The device can be factory programmed to any frequency in the range  
from 15.476MHz to 866.67MHz and from 975MHz to 1,300MHz and  
supports a very high degree of frequency precision of 218Hz or  
better. The extended temperature range supports wireless  
infrastructure, telecommun- ication and networking end equipment  
requirements.  
compatible  
RMS phase jitter @ 156.25MHz (12kHz - 20MHz): 0.24ps  
(typical), integer PLL feedback configuration  
RMS phase jitter @ 156.25MHz (1kHz - 40MHz): 0.27ps (typical),  
integer PLL feedback configuration  
2.5V or 3.3V supply  
-40°C to 85°C ambient operating temperature  
Available in a lead-free (RoHS 6) 6-pin ceramic package  
Block Diagram  
Pin Assignment  
DNU  
nOE  
VEE  
1
2
3
6
5
4
VCC  
nQ  
Q
PFD  
&
LPF  
FemtoClock® NG  
VCO  
1950-2600MHz  
Q  
nQ  
÷P  
OSC  
÷N  
fXTAL  
IDT8N3S272  
6-lead ceramic 5mm x 7mm x 1.55mm  
package body  
÷MINT, MFRAC  
2
CD Package  
Top View  
7
25  
Configuration Register (ROM)  
Pulldown  
nOE  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
1
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
Pin Description and Characteristic Tables  
Table 1. Pin Descriptions  
Number  
Name  
DNU  
nOE  
VEE  
Type  
Description  
1
2
Do not use (factory use only).  
Input  
Power  
Output  
Power  
Pulldown  
Output enable pin. See Table 3A for function. LVCMOS/LVTTL interface levels.  
Negative power supply.  
3
4, 5  
6
Differential clock output. LVPECL interface levels.  
Q, nQ  
VCC  
Positive power supply.  
NOTE: Pulldown refers to internal input resistor. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
5.5  
Maximum  
Units  
pF  
CIN  
Input Capacitance  
RPULLDOWN Input Pulldown Resistor  
50  
k  
Function Tables  
Table 3A. nOE Configuration  
Input  
nOE  
0 (default)  
1
Output Enable  
Outputs are enabled.  
Outputs Q, nQ are in high-impedance state.  
NOTE: nOE is an asynchronous control.  
Table 3B. Output Frequency Range  
15.476MHz to 866.67MHz  
975MHz to 1,300MHz  
NOTE: Supported output frequency range. The output frequency can be programmed to any frequency in this range and to a precision of  
218Hz or better.  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
2
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
Principles of Operation  
The block diagram consists of the internal 3rd overtone crystal and  
oscillator which provide the reference clock fXTAL of either  
18-bit fractional portion (MFRAC) and provides the means for  
high-resolution frequency generation. The output frequency fOUT is  
calculated by:  
114.285MHz or 100MHz. The PLL includes the FemtoClock NG VCO  
along with the Pre-divider (P), the feedback divider (M) and the post  
divider (N). The P, M, and N dividers determine the output frequency  
based on the fXTAL reference. The feedback divider is fractional  
supporting a huge number of output frequencies. The configuration  
of the feedback divider to integer-only values results in an improved  
output phase noise characteristics at the expense of the range of  
output frequencies. Internal registers are used to hold one factory  
pre-set P, M, and N configuration setting. The P, M, and N frequency  
configuration supports an output frequency range from 15.476MHz to  
866.67MHz and from 975MHz to 1,300MHz.  
1
P N  
MFRAC + 0.5  
------------  
f
= f  
MINT + -------------------------------------  
OUT  
XTAL  
18  
2
Frequency Configuration  
An order code is assigned to each frequency configuration  
programmed by the factory (default frequencies). For more  
information on the available default frequencies and order codes,  
please see the Ordering Information section in this document. For  
available order codes, see the FemtoClock NG Ceramic-Package XO  
and VCXO Ordering Product Information document.  
The devices use the fractional feedback divider with a delta-sigma  
modulator for noise shaping and robust frequency synthesis  
capability. The relatively high reference frequency minimizes phase  
noise generated by frequency multiplication and allows more efficient  
shaping of noise by the delta-sigma modulator.  
For more information on programming capabilities of the device for  
custom frequency and pull-range configurations, see the FemtoClock  
NG Ceramic 5x7 Module Programming Guide.  
The output frequency is determined by the 2-bit pre-divider (P), the  
feedback divider (M) and the 7-bit post divider (N). The feedback  
divider (M) consists of both a 7-bit integer portion (MINT) and an  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
3
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum  
Ratings may cause permanent damage to the device. These ratings  
are stress specifications only. Functional operation of product at  
these conditions or any conditions beyond those listed in the DC  
Characteristics or AC Characteristics is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect  
product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
3.63  
-0.5V to VCC + 0.5V  
Outputs, IO  
Continuous Current  
50mA  
Surge Current  
100mA  
Package Thermal Impedance, JA  
49.4C/W (0 mps)  
-65C to 150C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
3.3  
Maximum  
3.465  
Units  
V
Power Supply Voltage  
Power Supply Current  
3.135  
IEE  
123  
148  
mA  
Table 4B. Power Supply DC Characteristics, VCC = 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
2.5  
Maximum  
2.625  
Units  
V
Power Supply Voltage  
Power Supply Current  
2.375  
IEE  
119  
143  
mA  
Table 4C. LVPECL DC Characteristics, VCC = 3.3V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC – 1.4  
VCC – 2.0  
0.6  
Typical  
Maximum  
VCC – 0.8  
VCC – 1.6  
1.0  
Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50to VCC – 2V.  
Table 4D. LVPECL DC Characteristics, VCC = 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VCC – 1.4  
VCC – 2.0  
0.4  
Typical  
Maximum  
VCC – 0.8  
VCC – 1.5  
1.0  
Units  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
Peak-to-Peak Output Voltage Swing  
V
V
V
VOL  
VSWING  
NOTE 1: Outputs terminated with 50to VCC – 2V.  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
4
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
Table 4E. LVCMOS/LVTTL DC Characteristic, VCC = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCC + 0.3  
VCC + 0.3  
0.8  
Units  
V
V
CC = 3.3V  
CC = 2.5V  
2
VIH  
Input High Voltage  
V
1.7  
-0.3  
-0.3  
V
VCC = VIN = 3.465V  
V
VIL  
Input Low Voltage  
VCC = VIN = 2.5V  
0.7  
V
IIH  
IIL  
Input High Current  
Input Low Current  
nOE  
nOE  
VCC = VIN = 3.465V or 2.625V  
VCC = 3.465V or 2.625V, VIN = 0V  
150  
µA  
µA  
-10  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
5
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
AC Electrical Characteristics  
Table 5. AC Characteristics, VCC = 3.3V 5% or 2.5V 5%, VEE = 0V, TA = -40°C to 85°C  
Symbol  
fOUT  
fI  
Parameter  
Test Conditions  
Minimum  
15.476  
975  
Typical  
Maximum  
Units  
MHz  
MHz  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ps  
866.67  
1,300  
10  
Output Frequency Q, nQ  
Initial Accuracy  
Measured @ 25°C  
Option code = A or B  
100  
50  
fS  
fA  
fT  
Temperature Stability  
Aging  
Option code = E or F  
Option code = K or L  
20  
Frequency drift over 10 year life  
Frequency drift over 15 year life  
Option code A, B (10 year life)  
Option code E, F (10 year life)  
Option code K, L (10 year life)  
3
5
113  
63  
Total Stability  
33  
tjit(cc)  
Cycle-to-Cycle Jitter; NOTE 1  
RMS Period Jitter; NOTE 1  
30  
tjit(per)  
1.9  
2.8  
ps  
RMS Phase Jitter (Random);  
Fractional PLL feedback and  
fXTAL = 100MHz (2xxx order codes)  
17MHz fOUT 1300MHz,  
0.497  
0.882  
ps  
NOTE 2, 3, 4  
500MHz fOUT 1300MHz,  
0.232  
0.250  
0.275  
0.322  
0.384  
0.405  
ps  
ps  
ps  
NOTE 2, 3, 4  
125MHz fOUT 500MHz,  
RMS Phase Jitter (Random);  
Integer PLL feedback and  
NOTE 2, 3, 4  
tjit(Ø)  
17MHz fOUT 125MHz,  
fXTAL = 100MHz (1xxx order codes)  
NOTE 2, 3, 4  
fOUT 156.25MHz, NOTE 2, 3, 4  
fOUT 156.25MHz, NOTE 2, 3, 5  
0.242  
0.275  
0.311  
0.359  
ps  
ps  
RMS Phase Jitter (Random)  
Fractional PLL feedback and  
fXTAL = 114.285MHz (0xxx order codes)  
17MHz fOUT 1300MHz,  
0.474  
0.986  
ps  
NOTE 2, 3, 4  
Single-side band phase noise,   
100Hz from Carrier  
N(100)  
N(1k)  
156.25MHz  
156.25MHz  
156.25MHz  
156.25MHz  
156.25MHz  
-92  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Single-side band phase noise,   
1kHz from Carrier  
-120  
-131  
-138  
-139  
-154  
Single-side band phase noise,   
10kHz from Carrier  
N(10k)  
N(100k)  
N(1M)  
N(10M)  
Single-side band phase noise,   
100kHz from Carrier  
Single-side band phase noise,   
1MHz from Carrier  
Single-side band phase noise,   
10MHz from Carrier  
156.25MHz  
20% to 80%  
tR / tF  
odc  
Output Rise/Fall Time  
50  
47  
450  
53  
ps  
%
Output Duty Cycle  
tSTARTUP  
Device startup time after power up  
20  
ms  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
6
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
has been reached under these conditions.  
NOTE: XTAL parameters (initial accuracy, temperature stability, aging and total stability) are guaranteed by manufacturing.  
NOTE 1: This parameter is defined in accordance with JEDEC standard 65.  
NOTE 2: Refer to the phase noise plot.  
NOTE 3: Please see the FemtoClockNG Ceramic 5x7 Modules Programming guide for more information on PLL feedback modes and the  
optimum configuration for phase noise. Integer PLL feedback is the default operation for the dddd = 1xxx order codes.  
NOTE 4: Integration range: 12kHz - 20MHz.  
NOTE 5: Integration range: 1kHz - 40MHz.  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
7
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
Typical Phase Noise at 156.25MHz (12kHz - 20MHz)  
Offset Frequency (Hz)  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
8
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
Parameter Measurement Information  
2V  
2V  
SCOPE  
SCOPE  
V
V
CC  
Qx  
CC  
Qx  
nQx  
nQx  
VEE  
VEE  
-1.3V 0.165V  
-0.5V 0.125V  
3.3V LVPECL Output Load Test Circuit  
2.5V LVPECL Output Load Test Circuit  
Phase Noise Plot  
nQ  
80%  
80%  
tR  
VSWING  
20%  
20%  
Q
tF  
Offset Frequency  
f1  
f2  
RMS Phase Jitter =  
1
*
Area Under Curve Defined by the Offset Frequency Markers  
2 * * ƒ  
RMS Phase Jitter  
Output Rise/Fall Time  
nQ  
Q
nQ  
Q
tPW  
tPERIOD  
tcycle n  
tcycle n+1  
tjit(cc) = tcycle n – tcycle n+1  
|
|
tPW  
1000 Cycles  
odc =  
x 100%  
tPERIOD  
Output Duty Cycle/Pulse Width/Period  
Cycle-to-Cycle Jitter  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
9
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
Parameter Measurement Information, continued  
VOH  
VREF  
VOL  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
RMS Period Jitter  
Applications Information  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figures 1A and 1B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and clock  
component process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50  
3.3V  
R3  
125Ω  
R4  
125Ω  
3.3V  
3.3V  
3.3V  
Z
o = 50Ω  
3.3V  
+
_
Z
Z
o = 50Ω  
+
_
Input  
LVPECL  
Zo = 50Ω  
LVPECL  
Input  
o = 50Ω  
R1  
R2  
50Ω  
50Ω  
R1  
84Ω  
R2  
84Ω  
VCC - 2V  
1
RTT =  
* Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
Figure 1A. 3.3V LVPECL Output Termination  
Figure 1B. 3.3V LVPECL Output Termination  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
10  
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
Termination for 2.5V LVPECL Outputs  
Figure 2A and Figure 2B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating 50  
to VCC – 2V. For VCC = 2.5V, the VCC – 2V is very close to ground  
level. The R3 in Figure 2B can be eliminated and the termination is  
shown in Figure 2C.  
2.5V  
VCC = 2.5V  
2.5V  
2.5V  
VCC = 2.5V  
50Ω  
R1  
R3  
250Ω  
250Ω  
+
50Ω  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
R2  
50Ω  
50Ω  
2.5V LVPECL Driver  
R2  
R4  
62.5Ω  
62.5Ω  
R3  
18Ω  
Figure 2A. 2.5V LVPECL Driver Termination Example  
Figure 2B. 2.5V LVPECL Driver Termination Example  
2.5V  
VCC = 2.5V  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
R2  
50Ω  
50Ω  
Figure 2C. 2.5V LVPECL Driver Termination Example  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
11  
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
Schematic Layout  
Figure 3 shows an example IDT8N3S272 application schematic. The  
schematic example focuses on functional connections and is  
intended as an example only and may not represent the exact user  
configuration. Refer to the pin description and functional tables in the  
datasheet to ensure the logic control inputs are properly set. For  
example nOE can be configured from an FPGA instead of set with  
pullup and pulldown resistors as shown.  
capacitor on the VCC pin must be placed on the device side with direct  
return to the ground plane though vias. The remaining filter  
components can be on the opposite side of the PCB.  
Power supply filter component recommendations are a general  
guideline to be used for reducing external noise from coupling into  
the devices. The filter performance is designed for a wide range of  
noise frequencies. This low-pass filter starts to attenuate noise at  
approximately 10kHz. If a specific frequency noise component is  
known, such as switching power supplies frequencies, it is  
recommended that component values be adjusted and if required,  
additional filtering be added. Additionally, good general design  
practices for power plane voltage stability suggests adding bulk  
capacitance in the local area of all devices.  
As with any high speed analog circuitry, the power supply pins are  
vulnerable to random noise, so to achieve optimum jitter performance  
isolation of the VCC pin from power supply is required. In order to  
achieve the best possible filtering, it is recommended that the  
placement of the filter components be on the device side of the PCB  
as close to the power pins as possible. If space is limited, the 0.1µF  
Logic Control Input Examples  
Set Logic  
Input to '1'  
Set Logic  
Input to '0'  
VCC  
VCC  
RU1  
1K  
RU2  
Not Install  
To Logic  
Input  
pins  
To Logic  
Input  
pins  
RD1  
Not Install  
RD2  
1K  
3.3V  
FB1  
2
1
VC C  
C4  
10uF  
BLM18BB221SN1  
C5  
0. 1uF  
Place 0.1uF bypass cap  
directly adjacent to  
the VCC pin.  
U1  
1
2
3
6
4
5
C3  
0.1uF  
DNU VCC  
Zo = 50 Ohm  
nOE  
nOE  
VEE  
Q
+
Zo = 50 Ohm  
nQ  
-
R2  
50  
R1  
50  
+3.3V PECL Receiv er  
R3  
50  
For AC termination options consult the IDTApplications Note  
"Termination - LVPECL"  
Figure 3. IDT8N3S272 Schematic Example  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
12  
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
Power Considerations  
This section provides information on power dissipation and junction temperature for the IDT8N3S272.   
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the IDT8N3S272 is the sum of the core power plus the power dissipated in the load(s).   
The following is the power dissipation for VCC = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 148mA = 512.82mW  
Power (outputs)MAX = 34.2mW/Loaded Output pair  
Total Power_MAX (3.465V, with all outputs switching) = 512.82mW + 32mW = 544.82mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 49.4°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.545W * 49.4°C/W = 111.9°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 6. Thermal Resistance JA for 6 Lead Ceramic VFQFN, Forced Convection  
JA by Velocity  
Meters per Second  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
49.4°C/W  
44.2°C/W  
42.1°C/W  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
13  
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pair.  
LVPECL output driver circuit and termination are shown in Figure 4.  
VCC  
Q1  
VOUT  
RL  
50Ω  
VCC - 2V  
Figure 4. LVPECL Driver Circuit and Termination  
To calculate power dissipation per output pair due to loading, use the following equations which assume a 50load, and a termination voltage  
of VCC – 2V.  
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.8V  
(VCC_MAX – VOH_MAX) = 0.8V  
For logic low, VOUT = VOL_MAX = VCC_MAX 1.6V  
(VCC_MAX – VOL_MAX) = 1.6V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOH_MAX) = [(2V – (VCC_MAX – VOH_MAX))/RL] * (VCC_MAX – VOH_MAX) =  
[(2V – 0.8V)/50] * 0.8V = 19.2mW  
Pd_L = [(VOL_MAX – (VCC_MAX – 2V))/RL] * (VCC_MAX – VOL_MAX) = [(2V – (VCC_MAX – VOL_MAX))/RL] * (VCC_MAX – VOL_MAX) =  
[(2V – 1.6V)/50] * 1.6V = 12.8mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 32mW  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
14  
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
Reliability Information  
Table 7. vs. Air Flow Table for a 6-lead Ceramic 5mm x 7mm Package  
JA  
JA vs. Air Flow  
Meters per Second  
0
1
2
Multi-Layer PCB, JEDEC Standard Test Boards  
49.4°C/W  
44.2°C/W  
42.1°C/W  
Transistor Count  
The transistor count for IDT8N3S272 is: 47,511  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
15  
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
Package Outline and Package Dimensions  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
16  
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
Ordering Information for FemtoClock NG Ceramic-Package XO and VCXO Products  
The programmable VCXO and XO devices support a variety of  
devices options such as the output type, number of default  
frequencies, power supply voltage, ambient temperature range and  
the frequency accuracy. The device options, default frequencies and  
default VCXO pull range must be specified at the time of order and  
are programmed by IDT before the shipment. Table 7 specifies the  
available order codes, including the device options. Example part  
number: the order code 8N3S270FD-0001CDI specifies a  
programmable XO with a voltage supply of 2.5V, a 50 ppm crystal  
frequency accuracy, industrial temperature range, a lead-free (6/6  
RoHS) 6-lead ceramic 5mm x 7mm x 1.55mm package and is  
factory-programmed to the default frequencies of 100MHz.  
Other default frequencies and order codes are available from IDT on  
request.  
Table 8. Order Codes  
Part/Order Number  
8N X X XXX X X - dddd XX X X  
Shipping Package  
8 = Tape & Reel  
(no letter) = Tray  
FemtoClock NG  
Ambient Temperature Range  
“I” Industrial = (TA = -40°C to 85°C)  
(no letter) = (TA = 0°C to 70°C)  
Package Code  
I/O Identifier  
CD = Lead-Free, 6-lead ceramic 5mm x 7mm x 1.55mm  
0 = LVCMOS  
3 = LVPECL  
4 = LVDS  
Default-Frequency and VCXO Pull Range  
See Default Frequency & VCXO Pull-Range  
Ordering Information Table  
0000...0999: fXTAL = 114.285MHz  
1000...1999: fXTAL = 100.000MHz  
Number of Default Frequencies  
S = 1: Single  
D = 2: Dual  
Q = 4: Quad  
Die Revision  
C
Part Number  
Option Code (Supply Voltage and Frequency-Stability)  
270 = XO, pin 1 = OE  
271 = XO, pin 2 = OE  
272 = XO, pin 2 = nOE  
A = VCC = 3.3V 5%, 100ppm  
B = VCC = 2.5V 5%, 100ppm  
E = VCC = 3.3V 5%, 50ppm  
F = VCC = 2.5V 5%, 50ppm  
K = VCC = 3.3V 5%, 20ppm  
L = VCC = 2.5V 5%, 20ppm  
Industrial Temperature Range (TA = -40°C to 85°C)  
Commercial Temperature Range (TA = 0°C to 70°C)  
IDT8N3S272yC-  
ddddCDI  
IDT8N3S272yC-  
ddddCD  
Marking  
y = Option Code, dddd = Default-Frequency and VCXO Pull Range.  
NOTE: For order information, see the FemtoClock NG Ceramic-Package XO and VCXO Ordering Product Information document.  
IDT8N3S272CCD REVISION A NOVEMBER 28, 2012  
17  
©2012 Integrated Device Technology, Inc.  
IDT8N3S272 Data Sheet  
LVPECL FREQUENCY-PROGRAMMABLE CRYSTAL OSCILLATOR  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2012. All rights reserved.  
厂商 型号 描述 页数 下载

3M

8N36 3M™微型串行连接SCSI ( miniSAS )电缆组件[ 3M™ Mini Serial Attached SCSI (miniSAS) Cable Assembly ] 6 页

3M

8N36-AA0105-0.25 3M™微型串行连接SCSI ( miniSAS )电缆组件[ 3M™ Mini Serial Attached SCSI (miniSAS) Cable Assembly ] 6 页

3M

8N36-AA0105-0.50 3M™微型串行连接SCSI ( miniSAS )电缆组件[ 3M™ Mini Serial Attached SCSI (miniSAS) Cable Assembly ] 6 页

3M

8N36-AA0105-0.75 3M™微型串行连接SCSI ( miniSAS )电缆组件[ 3M™ Mini Serial Attached SCSI (miniSAS) Cable Assembly ] 6 页

3M

8N36-AA0105-1.00 3M™微型串行连接SCSI ( miniSAS )电缆组件[ 3M™ Mini Serial Attached SCSI (miniSAS) Cable Assembly ] 6 页

3M

8N36-AA0205-0.25 3M™微型串行连接SCSI ( miniSAS )电缆组件[ 3M™ Mini Serial Attached SCSI (miniSAS) Cable Assembly ] 6 页

3M

8N36-AA0205-0.50 3M™微型串行连接SCSI ( miniSAS )电缆组件[ 3M™ Mini Serial Attached SCSI (miniSAS) Cable Assembly ] 6 页

3M

8N36-AA0205-0.75 3M™微型串行连接SCSI ( miniSAS )电缆组件[ 3M™ Mini Serial Attached SCSI (miniSAS) Cable Assembly ] 6 页

3M

8N36-AA0205-1.00 3M™微型串行连接SCSI ( miniSAS )电缆组件[ 3M™ Mini Serial Attached SCSI (miniSAS) Cable Assembly ] 6 页

3M

8N36-AA0305-0.25 3M™微型串行连接SCSI ( miniSAS )电缆组件[ 3M™ Mini Serial Attached SCSI (miniSAS) Cable Assembly ] 6 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.182099s