找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

OVTL09LG3A

型号:

OVTL09LG3A

品牌:

TTELEC[ TT Electronics ]

页数:

14 页

PDF大小:

1337 K

Lednium Series Optimal X  
(10-watts,120° Viewing Angle)  
OVTL09LG3x Series  
Revolutionary 3-dimensional packaged LED source  
Robust energy-efficient design with long operating life  
Low thermal resistance (2.5°C/W)  
Exceptional spatial uniformity  
Available in amber, blue, cyan, green, red, cool white,  
daylight white, warm white and multi-colored  
The OVTL09LG3x Series surface mount provides a 10-Watt energy-efficient 3-dimensional packaged LED  
source that offers high luminance, low thermal resistance @ 2.5°C/W and a long operating lifespan. A 120°  
viewing angle and three color options of white (cool, daylight, warm) make the Optimal X highly suitable for  
general illumination and specialized lighting applications.  
Applications  
Automotive exterior and interior lighting  
Architectural lighting  
Electronic signs and signals  
Task lighting  
General illumination  
Flux Characteristics (IF = 1.05 A, TJ = 25° C)  
Viewing An-  
Typical Luminous  
Flux (lm)  
Part Number  
Emitted Color  
Lens Color  
gle  
Amber  
Blue  
305  
105  
348  
522  
400  
565  
522  
435  
300  
OVTL09LG3A  
OVTL09LG3B  
OVTL09LG3C  
OVTL09LG3G  
OVTL09LG3R  
OVTL09LG3W  
OVTL09LG3WD  
OVTL09LG3WW  
OVTL09LG3M  
Cyan  
Green  
Red  
120°  
Water Clear  
Cool White  
Daylight White  
Warm White  
Red/Green/Blue  
Moisture  
RoHS  
DO NOT LOOK DIRECTLY  
AT LED WITH UNSHIELDED  
EYES OR DAMAGE TO  
RETINA MAY OCCUR.  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 1 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
Lednium Series Optimal X  
OVTL09LG3x Series  
Package Drawing:  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 2 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
Lednium Series Optimal X  
OVTL09LG3x Series  
Absolute Maximum Ratings  
DC Forward Current  
Peak Pulsed Forward Current1  
1.05 A  
3 A  
Reverse Voltage  
15 V  
Maximum Allowable Junction Temperature2  
Storage and Operating Temperature  
130° C  
-50° ~ +85 ° C  
Notes:  
1. Pulse width 1 ms maximum, duty cycle 1/16.  
2. Thermal resistance junction to board (TJB) is 2.5° C/W.  
Electrical Characteristics (IF = 1.05 A, TJ = 25° C)  
PARAMETER  
MIN  
5.7  
8.7  
9.6  
5.7  
8.5  
8.7  
----  
----  
----  
----  
TYP  
6.9  
MAX  
7.8  
UNITS  
SYMBOL  
Forward Voltage (Amber)  
V
V
Forward Voltage (Blue)  
10.2  
10.8  
6.9  
11.1  
12.0  
7.8  
Forward Voltage (Green & Cyan)  
Forward Voltage (Red)  
V
VF  
V
Forward Voltage (Red/Green/Blue)  
Forward Voltage (White)  
9.2  
9.9  
V
10.2  
-6.0  
-4.8  
-5.0  
120  
11.1  
----  
V
VF Temperature Co-efficient (Amber, Red)  
VF Temperature Co-efficient (White, Blue)  
VF Temperature Co-efficient (Green & Cyan)  
50% Power Angle  
mV/°C  
mV/°C  
mV/°C  
deg  
----  
----  
2 Θ½  
----  
Optical Characteristics (IF = 1.05 A, TJ = 25° C)  
DOMINANT WAVELENGTH  
COLOR  
SPECTRAL FULL-WIDTH-  
HALF-MAXIMUM  
DOMINANT WAVELENGTH  
TEMPERATURE DEPENDENCE  
MIN  
590  
455  
500  
510  
620  
TYP  
595  
460  
505  
515  
625  
MAX  
600  
465  
510  
520  
630  
Amber  
Blue  
16 nm  
24 nm  
37nm  
40 nm  
18 nm  
0.08 nm/° C  
0.05 nm/° C  
0.04 nm/° C  
0.04 nm/° C  
0.05 nm/° C  
Cyan  
Green  
Red  
Color  
Minimum CCT (°K) Maximum CCT (°K)  
Chromaticity Coordinates  
Cx  
Cy  
Cx  
Cy  
Cx  
Cy  
.298  
.314  
.313  
.341  
.388  
.375  
.304  
.297  
.317  
.313  
.403  
.424  
.316  
.318  
.336  
.345  
.440  
.440  
.313  
.340  
.338  
.382  
.419  
.391  
Cool White  
6400  
5200  
3200  
7600  
6400  
3800  
Daylight White  
Warm White  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 3 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
Lednium Series Optimal X  
OVTL09LG3 Series  
Standard Bins  
Lamps are sorted to luminous flux (Φ) and forward voltage (VF) bins shown. Orders may be filled with any or all bins  
contained as below.  
OVTL09LG3A (AMBER) (IF = 1.05A)  
Dominant Wavelength 590-600nm  
V1  
V2  
350  
275  
200  
A2  
A1  
A2V1  
A2V2  
A1V1  
A1V2  
7.0  
8.0  
6.0  
Forward Voltage (VF)  
OVTL09LG3B (BLUE) (IF = 1.05A)  
Dominant Wavelength 455-465nm  
V3  
V4  
130  
B2  
B1  
B2V3  
B2V4  
110  
90  
B1V3  
B1V4  
9.5  
10.5  
11.5  
Forward Voltage (VF)  
OVTL09LG3C (CYAN) (IF = 1.05A)  
Dominant Wavelength 500-510nm  
V3  
V4  
400  
350  
300  
T2V3  
T2V4  
T2  
T1  
T1V3  
T1V4  
10.5  
9.5  
11.5  
Forward Voltage (VF)  
OVTL09LG3G (GREEN) (IF = 1.05 mA)  
Dominant Wavelength 510-520nm  
V3  
V4  
550  
G2V3  
G1V3  
G2V4  
G1V4  
G2  
G1  
500  
450  
11.5  
10.5  
9.5  
Forward Voltage (VF)  
Important Notes:  
1. All ranks will be included per delivery, rank ratio will be based on the chip distribution.  
2. To designate forward voltage and luminous flux ranks, please contact OPTEK.  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 4 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
Lednium Series Optimal X  
OVTL09LG3 Series  
Standard Bins  
Lamps are sorted to luminous flux (Φ) and forward voltage (VF) bins shown. Orders may be filled with any or all bins  
contained as below.  
OVTL09LG3R (RED) (IF = 1.05A)  
Dominant Wavelength 620-630nm  
V1  
V2  
450  
400  
350  
R2V1  
R2V2  
R2  
R1  
R1V1  
R1V2  
7.0  
8.0  
6.0  
Forward Voltage (VF)  
OVTL09LG3W (COOL WHITE) (IF = 1.05A)  
Typical CCT 7000°K (±600°K)  
V3  
V4  
600  
C2V3  
C2V4  
C2  
C1  
550  
500  
C1V3  
C1V4  
10.5  
11.5  
9.5  
Forward Voltage (VF)  
OVTL09LG3WD (DAYLIGHT WHITE) (IF = 1.05 A)  
Typical CCT 5800°K (±600°K)  
V3  
V4  
600  
550  
500  
D2V3  
D1V3  
D2V4  
D2  
D1  
11.5  
D1V4  
9.5  
10.5  
Forward Voltage (VF)  
OVTL01LGAWW and OVTL01LGAWWS (WARM WHITE) (IF = 350 mA)  
Typical CCT 3500°K (±300°K)  
V3  
V4  
500  
W2  
W1  
W2V3  
W2V4  
450  
400  
W1V3  
W1V4  
11.5  
9.5  
10.5  
Forward Voltage (VF)  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 5 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
Lednium Series Optimal X  
OVTL09LG3x Series  
White Color Bins  
0.45  
0.43  
0.41  
0.39  
0.37  
0.35  
0.33  
WW  
WD  
W
0.31  
0.29  
0.27  
0.25  
0.25  
0.27  
0.29  
0.31  
0.33  
0.35  
0.37  
0.39  
0.41  
0.43  
0.45  
Color  
CCT  
W
Cool White  
Daylight White  
Warm White  
7000°K ± 600  
5800°K ± 600  
3500°K ± 300  
WD  
WW  
White Color Bins  
Green  
Cyan  
Amber  
Warm  
Daylight  
White  
Cool  
Red  
Blue  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 6 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
Lednium Series Optimal X  
OVTL09LG3x Series  
Dimming and color mixing for OVTL09LG3M  
In the diagram below if each parallel group of three LEDs is a single color the luminous flux produced is a  
mixture or R + G + B. To change the emission level of any group (color), and therefore the color of the mixed light,  
the current passing through each group must be changed, yet the circuit current remains a constant value. The  
means of doing this is to shunt current away from a group while allowing the total circuit current to remain constant.  
By controlling the operating point of the three shunt transistors, the operating current of each group of LEDs  
can be independently and continuously adjusted. The transistors will turn OFF (short across) each strip individually  
when they are ON. The frequency for PWMs should be high to eliminate flickering (more than 20KHz preferred).  
Controlling the ON time for each strip will control the average intensity of each strip in order to color-mix the RGB  
Turtle.  
3
MGSF1N03LT1G  
Blue PWN  
1
1
1
2
3
R1 - 10K  
MGSF1N03LT1G  
3
2
1
Current  
Source  
Green PWM  
2
3
R1 - 10K  
MGSF1N03LT1G  
Red PWM  
Common  
2
R1 - 10K  
Spatial Intensity Distribution  
-
-80  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Angle (degrees)  
Normalized Spectral Intensity vs Angular Displacement  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 7 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
Lednium Series Optimal X  
OVTL09LG3x Series  
Typical Electro-Optical Characteristics Curves  
Input Current = 350 mA, TJ = 25° C  
—— Cyan  
Input Current = 350 mA, TJ = 25° C  
1.0  
0.8  
0.6  
0.4  
1.0  
0.8  
0.6  
0.4  
0.2  
0.2  
0.0  
0.0  
200 300 400 500 600 700  
380 430 480 530 580 630 680 730 780  
780  
Wavelength (nm)  
Wavelength (nm)  
Wavelength Characteristics  
Wavelength Characteristics  
Input Current = 350 mA, TJ = 25° C  
Input Current = 350 mA, TJ = 25° C  
1.0  
0.8  
0.6  
1.0  
—— Daylight White  
—— Cool White  
0.8  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
200 300 400  
500  
600 700  
780  
300  
400 500  
600 700  
200  
780  
Wavelength (nm)  
Wavelength (nm)  
Wavelength Characteristics  
Wavelength Characteristics  
Input Current = 350 mA, TJ = 25° C  
1.0  
—— Warm White  
0.8  
0.6  
500  
400  
300  
200  
100  
0
Green/  
Red  
Amber  
Cyan  
0.4  
Blue/White  
0.2  
0.0  
1.7  
2.2  
2.7  
3.2  
3.7  
200  
300  
400  
500  
600 700  
780  
Voltage (VF)  
Wavelength (nm)  
Forward Current vs. Forward Voltage  
Wavelength Characteristics  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 8 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
Lednium Series Optimal X  
OVTL09LG3x Series  
Typical Electro-Optical Characteristics Curves  
Luminosity normalized to TJ = 25° C  
Luminosity normalized to TJ = 25° C  
2.0  
% Normalized Luminosity at  
Junction Temperature (° C)  
OPTEK  
Part  
Number  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Red  
Amber  
Green  
Cyan  
White  
Blue  
0
25  
50  
75  
100 125  
OVTLO9LG3A  
OVTLO9LG3B  
OVTL09LG3C  
OVTLO9LG3G  
OVTLO9LG3R  
OVTLO9LG3W  
OVTLO9LG3WD  
OVTLO9LG3WW  
OVTL09LG3M  
125  
107  
110  
110  
135  
105  
105  
105  
110  
100  
100  
100  
100  
100  
100  
100  
100  
100  
85  
95  
95  
95  
90  
93  
93  
93  
95  
70  
87  
85  
85  
75  
82  
82  
82  
85  
60  
75  
70  
70  
65  
68  
68  
68  
70  
45  
65  
65  
65  
50  
60  
60  
60  
65  
-
0
20  
40  
60  
80 100 120 140 160  
Junction Temperature °C  
Critical Thermal Conditions (To maintain junction temperature (TJ) at 85° C)  
WHEN MOUNTED ON:  
FR4  
PC BOARD  
SPREADER  
PLATE  
3x3x1 in. FIN  
EXTRUSION  
ACTIVE  
HEATSINK  
IMS  
USE SAFE OPERATING CURRENT OF:  
200 mA  
500 mA  
700 mA  
800 mA  
1000 mA  
NOTE: Refer to OPTEK Application Note #228 on thermal management (www.optekinc.com/pdf/AppNote228.pdf).  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 9 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
Lednium Series Optimal X  
OVTL09LG3x Series  
OPTEK 10-watt Lednium Markings  
Θ
Cathode  
OVTL09LG3X  
Date Code-Batch Number  
MALAYSIA  
FRONT  
BACK  
Packaging: 25 pieces per tray  
OPTEK’s Lednium Series Solid State Lighting products package the highest quality LED chips.  
Typically, the lumen output of these chips can be as high as 70% after 50,000 hours of operation. This  
prediction is based on specific test results and on tests on similar materials, and relies on strict  
observation of the design limits and ratings included in this data sheet.  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 10 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
Lednium Series Optimal X  
OVTL09LG3x Series  
Thermal Resistance  
Optek Lednium Series 1-watt Cup – Measured value 2oC/w  
(OVTL01LGAxx)  
(OVTL09LG3xx)  
Optek Lednium Series 10-watt Matrix – Measured value 2.5oC/w  
Theory  
In line with industry practice, the thermal resistance (Rth) of our LED packages is stated as Rθ j-b, thermal  
resistance from the junction region ( j ) of the die, to the board (b) - PCB or other mounting surface. What this  
means in a practical sense, is that when operating at rated input (1watt approx.) the junction of a die in a cup prod-  
uct will attain a temperature that is 2oC higher than a reference point on the mounting surface beneath it. In the  
case of a 10-watt Matrix product, the maximum temperature difference between any junction and the reference  
point is 25oC (2.5oC/w x 10w). The thermal path thus quantified is a composite of a number of thermally resistive  
elements in a series and or parallel configuration, but lumped together into a single parameter for convenience.  
For an end user of LED products then, this constant allows the junction temperature to be determined by a  
simple measurement of the temperature of the mounting surface. Optek recommends that the design value of sus-  
tained die junction temperature be limited to 80oC. In an ambient temperature of 25oC, the board temperature of a  
10-watt device must be constrained below 55oC to comply with this recommendation, and for a 1-watt cup the board  
can theoretically operate at up to 78oC.  
From the diagram above it can be seen that the heat generated in the junction region follows a somewhat  
serial conductive path through the package to the major radiating surface – which in this example is a single sided  
PCB. Some additional radiation may occur directly from the upper surface of the package (not shown). This would  
be conducted upward from the die surface through the transparent encapsulating material to the package surface  
and be radiated from there. To all practical purposes this is a very minor effect. The polymer encapsulants in normal  
use are poor conductors of heat.  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 11 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
Lednium Series Optimal X  
OVTL09LG3x Series  
Typical elements in the conducting path and corresponding nominal thermal conductivities are:  
Elements  
w/mK  
150  
50  
Epilayers  
GaN/InGaN  
Substrate  
Sapphire  
Die attach material  
Package  
Conductive epoxy  
Silver plated copper  
Solder (Sn/Ag/Cu)  
Copper  
10  
350  
35  
Solder  
Copper cladding  
300  
Note : Thermal conductivity is a physical constant. For the materials above, the respective contribution each makes  
to the overall thermal resistance (Rθ j-b) is a function of the thickness of each material layer, and the surface area.  
Thermal Conductivity (TC) is defined to be the heat conducted in time (t), through thickness (T) in a direction normal  
to a surface area (A), due to a temperature difference (δT).  
Therefore  
TC= q/t x {T/[A x δT]}  
and  
δT = [Q x T]/[A x TC]  
where δT = Temp. difference (K)  
Q = Power (w)  
A = Surface area (m2)  
T = layer thickness (m)  
TC = Thermal Conductivity (w/mK)  
Theoretical Calculation (for 1 watt dissipated in a cup product via a single 40mil die)  
GaN  
Thickness approx 10 x 10-6  
Area 10-6  
= 1 x 10x10-6/ 10-6 x 150  
= 0.07 K  
Substrate  
Die attach  
Package  
Solder  
T = 60 x 10-6  
= 1 x 60x10-6/ 10-6 x 50  
= 1.2 K  
T = 20 x 10-6  
A = 2 x 10-6  
= 1 x 20x10-6 / 2x10-6 x 10  
= 1  
T = 0.4x10-3  
A = 6x10-6  
= 1 x 0.4x10-3/ 6x10-6 x 350  
= 0.19  
T = 60x10-6  
A = 6x10-6  
= 1 x 60x10-6/6x10-6 x 25  
= 0.4  
Total Calculated δT = 2.86K  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 12 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
Lednium Series Optimal X  
OVTL09LG3x Series  
Power input is 1 watt; however, some power is converted into light energy. Assuming this is of the order of  
200mw, the adjusted value of δT is 2.29K. The calculation now assumes that all of the dissipation, 800mw of heat,  
is conducted along the thermal path, thereby ignoring any conduction and subsequent radiation that is not direction-  
ally normal to the surfaces considered, ie: conduction through the encapsulant material vertically away from the  
board, and conduction horizontally away from the heat source. The calculation also assumes that there is no contri-  
bution to thermal resistance at the boundaries between material layers. In practice it is improbable that perfect  
transfer will occur at these transition regions, even though the bonding between layers in this example are of high  
quality. In general, the calculation indicates that the measurements below are of the order of magnitude that can be  
expected.  
The alternate matrix product range is of a much more complicated thermal design, which does not lend it-  
self to a simple theoretical calculation similar to that shown above. There are multiple incident heat sources, parallel  
heat conduction paths, and significantly larger surface area for stray radiation, eg. Cup above has a surface area  
available for stray radiation of approximately, 25mm2 per watt of input power. A 10-watt matrix product has approxi-  
mately 92.5mm2 of exposed surface per input watt.  
Measurements  
The key to an accurate measurement of thermal resistance is to obtain a reliable value for the junction tem-  
perature (Tj). Since the die itself is, and must be, encapsulated during testing, and the junction is contained within  
the structure of the die, direct measurement of the junction temperature by normal means is not possible.  
Two methods of non-contact thermography are available, both of which rely on emitted infrared detection.  
Infrared imagery by calibrated radiograph is a possibility; however, in the instance of a cup product only a  
small value of δT is expected which makes accurate estimation of the actual temperature gradient difficult using col-  
orimetry.  
The alternative measurement type is digital infrared thermography. This means there is an inherent uncer-  
tainty in the calculation algorithm, which sometimes gives results considered unacceptably inaccurate. In this in-  
stance absolute accuracy is of secondary importance because the value to be determined is a temperature differ-  
ence (δT) which requires only relative values – any error in a first reading will also be present in subsequent read-  
ings that are about the same value. The difference between readings is accurate.  
The other significant drawback to infrared thermometers is a limitation to minimizing the spot size over  
which the measurement is made. This poses a difficulty for small assemblies like an LED cup, and in particular the  
added complication that the calculated temperature is an average value for the area being interrogated further com-  
plicates the issue. Another concern is sometimes raised about the ability of this type of instrument to detect a  
heated surface beyond the closest transparent radiating surface. This is a significant issue for far field measure-  
ments; however, it is simple to demonstrate that this does not hold true for the near field, and particularly when the  
incident beam has a known focal length.  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 13 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
Lednium Series Optimal X  
OVTL09LG3x Series  
Measurement  
Instrument: IR Thermometer  
Auto ranging: -100 to 1200oC  
Spot size 3mm D.  
Focus 25.4mm  
Optimal I Product  
Input 350mA at 3.3V(1watt)  
Averaged Test Results  
Tj  
32  
Tb  
30.2  
δT  
1.8  
Rth  
1.8oC/W  
Optimal X Product  
Input 1050mA at 10.2V(10.7watts)  
Averaged Test Results  
Tj  
89  
Tb  
62  
δT  
27  
Rth  
2.52°C/W  
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.  
Issue B.2 07/08  
Page 14 of 14  
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006  
Phone: (972) 323-2200 or (800) 341-4747 FAX: (972) 323-2396 visibleLED@optekinc.com www.optekinc.com  
厂商 型号 描述 页数 下载

TTELEC

OVTL01LGAA [ Lednium Series Optimal I ] 10 页

TTELEC

OVTL01LGAAS [ Lednium Series Optimal I ] 10 页

TTELEC

OVTL01LGAB [ Lednium Series Optimal I ] 10 页

TTELEC

OVTL01LGABS [ Lednium Series Optimal I ] 10 页

TTELEC

OVTL01LGAC [ Lednium Series Optimal I ] 10 页

TTELEC

OVTL01LGACS [ Lednium Series Optimal I ] 10 页

TTELEC

OVTL01LGAG [ Lednium Series Optimal I ] 10 页

TTELEC

OVTL01LGAGS [ Lednium Series Optimal I ] 10 页

TTELEC

OVTL01LGAR [ Lednium Series Optimal I ] 10 页

TTELEC

OVTL01LGARS [ Lednium Series Optimal I ] 10 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.171453s