找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

EXE8602

型号:

EXE8602

品牌:

IDT[ INTEGRATED DEVICE TECHNOLOGY ]

页数:

16 页

PDF大小:

189 K

700MHZ, CRYSTAL OSCILLATOR-TO-  
DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
ICS8442BI  
DATA SHEET  
GENERAL DESCRIPTION  
FEATURES  
The ICS8442BI is a general purpose, dual output Crystal-  
to-Differential LVDS High Frequency Synthesizer.  
The ICS8442BI has a selectable TEST_CLK or crystal  
input. The TEST_CLK input accepts LVCMOS or LVTTL input  
levels and translates them to LVDS levels. The VCO operates  
at a frequency range of 250MHz to 700MHz.The VCO  
frequency is programmed in steps equal to the value of the  
input reference or crystal frequency. The VCO and output  
frequency can be programmed using the serial or  
parallelinterface to the configuration logic. The low phase  
noisecharacteristics of the ICS8442BI makes it an ideal clock  
source for Gigabit Ethernet and Sonet applications.  
Dual differential LVDS outputs  
Selectable crystal oscillator interface or  
LVCMOS/LVTTL TEST_CLK  
Output frequency range: 31.25MHz to 700MHz  
Crystal input frequency range: 10MHz to 25MHz  
VCO range: 250MHz to 700MHz  
Parallel or serial interface for programming counter  
and output dividers  
RMS period jitter: 3.5ps (typical)  
Cycle-to-cycle jitter: 18ps (typical)  
3.3V supply voltage  
-40°C to 85°C ambient operating temperature  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
VCO_SEL  
XTAL_SEL  
TEST_CLK  
0
32 31 30 29 28 27 26 25  
XTAL_IN  
1
24  
23  
22  
21  
20  
19  
18  
17  
XTAL_OUT  
TEST_CLK  
XTAL_SEL  
VDDA  
M5  
M6  
1
2
3
4
5
6
7
8
OSC  
XTAL_OUT  
M7  
M8  
ICS8442BI  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
N0  
PLL  
N1  
PHASE DETECTOR  
÷ 1  
nc  
÷ 2  
MR  
GND  
0
VCO  
÷ 4  
÷ 8  
FOUT0  
nFOUT0  
FOUT1  
nFOUT1  
9
14 15 16  
÷ M  
1
S_LOAD  
S_DATA  
S_CLOCK  
nP_LOAD  
CONFIGURATION  
INTERFACE  
LOGIC  
TEST  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
M0:M8  
N0:N1  
Y Package  
TopView  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
1
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
FUNCTIONAL DESCRIPTION  
output divider to a specific default state that will automati-  
cally occur during power-up. The TEST output is LOW when  
operating in the parallel input mode. The relationship be-  
tween the VCO frequency, the crystal frequency and the M  
divider is defined as follows:  
NOTE: The functional description that follows describes op-  
eration using a 25MHz crystal. Valid PLL loop divider values  
for different crystal or input frequencies are defined in the In-  
put Frequency Characteristics, Table 5, NOTE 1.  
The ICS8442BI features a fully integrated PLL and there-  
fore requires no external components for setting the loop  
bandwidth. A fundamental crystal is used as the input to the  
on-chip oscillator. The output of the oscillator is fed into the  
phase detector. A 25MHz crystal provides a 25MHz phase  
detector reference frequency. The VCO of the PLL operates  
over a range of 250MHz to 700MHz. The output of the M  
divider is also applied to the phase detector.  
fVCO = fxtal x M  
The M value and the required values of M0 through M8 are  
shown in Table 3B, Programmable VCO Frequency Function  
Table.Valid M values for which the PLL will achieve lock for a  
25MHz reference are defined as 10 M 28.The frequency  
out is defined as follows:  
FOUT = fVCO = fxtal x M  
N
N
Serial operation occurs when nP_LOAD is HIGH and S_LOAD  
is LOW. The shift register is loaded by sampling the S_DATA  
bits with the rising edge of S_CLOCK. The contents of the  
shift register are loaded into the M divider and N output di-  
vider when S_LOAD transitions from LOW-to-HIGH. The M  
divide and N output divide values are latched on the HIGH-to-  
LOW transition of S_LOAD. If S_LOAD is held HIGH, data at  
the S_DATA input is passed directly to the M divider and N  
output divider on each rising edge of S_CLOCK. The serial  
mode can be used to program the M and N bits and test bits  
T1 andT0.The internal registers T0 andT1 determine the state  
of the TEST output as follows:  
The phase detector and the M divider force the VCO output fre-  
quency to be M times the reference frequency by adjusting the  
VCO control voltage. Note that for some values of M (either too  
high or too low), the PLL will not achieve lock. The output of the  
VCO is scaled by a divider prior to being sent to each of the  
LVDS output buffers.The divider provides a 50% output duty cycle.  
The programmable features of the ICS8442BI support two  
input modes to program the M divider and N output divider.  
The two input operational modes are parallel and serial.  
Figure 1 shows the timing diagram for each mode. In paral-  
lel mode, the nP_LOAD input is initially LOW. The data on  
inputs M0 through M8 and N0 and N1 is passed directly to  
the M divider and N output divider. On the LOW-to-HIGH  
transition of the nP_LOAD input, the data is latched and the  
M divider remains loaded until the next LOW transition on  
nP_LOAD or until a serial event occurs. As a result, the M  
and N bits can be hardwired to set the M divider and N  
T1 T0  
TEST Output  
LOW  
0
0
1
1
0
1
0
1
S_Data, Shift Register Input  
Output of M divider  
CMOS FOUT  
SERIAL LOADING  
S_CLOCK  
T1  
T0  
*NULL N1  
N0 M8  
M7  
M6  
M5 M4  
M3 M2  
M1  
M0  
S_DATA  
t
t
H
S
S_LOAD  
nP_LOAD  
t
S
PARALLEL LOADING  
M0:M8, N0:N1  
nP_LOAD  
M, N  
t
t
H
S
S_LOAD  
Time  
FIGURE 1. PARALLEL & SERIAL LOAD OPERATIONS  
*NOTE: The NULL timing slot must be observed.  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
2
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pullup  
Description  
1
M5  
Input  
Input  
M divider inputs. Data latched on LOW-to-HIGH transistion  
of nP_LOAD input. LVCMOS / LVTTL interface levels.  
2, 3, 4,  
28, 29,  
30, 31, 32  
M6, M7, M8,  
M0, M1,  
M2, M3, M4  
Pulldown  
Pulldown  
Determines output divider value as defined in Table 3C  
Function Table. LVCMOS / LVTTL interface levels.  
5, 6  
N0, N1  
Input  
7
nc  
Unused  
Power  
No connect.  
8, 16  
GND  
Power supply ground.  
Test output which is ACTIVE in the serial mode of operation. Output  
driven LOW in parallel mode. LVCMOS / LVTTL interface levels.  
9
TEST  
VDD  
Output  
Power  
10, 13  
11, 12  
14, 15  
Core supply pins.  
FOUT1, nFOUT1 Output  
FOUT0, nFOUT0 Output  
Differential output for the synthesizer. LVDS interface levels.  
Differential output for the synthesizer. LVDS interface levels.  
Active High Master Reset. When logic HIGH, the internal dividers  
are reset causing the true outputs FOUTx to go low and the inverted  
17  
MR  
Input  
Pulldown outputs nFOUTx to go high. When logic LOW, the internal dividers  
and the outputs are enabled. Assertion of MR does not effect loaded  
M, N, and T values. LVCMOS / LVTTL interface levels.  
Clocks in serial data present at S_DATA input into the shift register  
Pulldown  
18  
19  
S_CLOCK  
S_DATA  
Input  
Input  
on the rising edge of S_CLOCK. LVCMOS / LVTTL interface levels.  
Shift register serial input. Data sampled on the rising edge  
Pulldown  
of S_CLOCK. LVCMOS / LVTTL interface levels.  
Controls transition of data from shift register into the dividers.  
LVCMOS / LVTTL interface levels.  
20  
21  
S_LOAD  
VDDA  
Input  
Pulldown  
Power  
Analog supply pin.  
Selects between crystal oscillator or test inputs as the PLL reference  
source. Selects XTAL inputs when HIGH. Selects TEST_CLK when  
LOW. LVCMOS / LVTTL interface levels.  
22  
XTAL_SEL  
TEST_CLK  
Input  
Pullup  
23  
Input  
Input  
Pulldown Test clock input. LVCMOS / LVTTL interface levels.  
XTAL_IN,  
XTAL_OUT  
Crystal oscillator interface. XTAL_IN is the input,  
XTAL_OUT is the output.  
24, 25  
Parallel load input. Determines when data present at M8:M0 is  
Pulldown loaded into M divider, and when data present at N1:N0 sets the  
N output divider value. LVCMOS / LVTTL interface levels.  
26  
27  
nP_LOAD  
VCO_SEL  
Input  
Input  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS / LVTTL interface levels.  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Input Capacitance  
Input Pullup Resistor  
4
pF  
kΩ  
kΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
3
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
TABLE 3A. PARALLEL AND SERIAL MODE FUNCTION TABLE  
Inputs  
Conditions  
MR nP_LOAD  
M
N
S_LOAD S_CLOCK S_DATA  
Reset. When HIGH, forces the outputs to a differential  
LOW state (FOUTx = LOW and nFOUTx = HIGH), but  
does not effect loaded M, N, and T values.  
H
L
X
L
X
X
X
X
X
X
X
X
Data on M and N inputs passed directly to the M  
divider and N output divider. TEST output forced LOW.  
Data Data  
Data Data  
Data is latched into input registers and remains loaded  
until next LOW transition or until a serial event occurs.  
Serial input mode. Shift register is loaded with data on  
S_DATA on each rising edge of S_CLOCK.  
Contents of the shift register are passed to the  
M divider and N output divider.  
L
L
L
L
L
X
L
X
H
H
X
X
X
X
Data  
Data  
L
L
L
H
H
H
X
X
X
X
X
X
L
L
X
Data  
X
M divider and N output divider values are latched.  
Parallel or serial input do not affect shift registers.  
S_DATA passed directly to M divider as it is clocked.  
H
Data  
NOTE: L = LOW  
H = HIGH  
X = Don't care  
= Rising edge transition  
= Falling edge transition  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE  
256  
M8  
0
128  
M7  
0
64  
M6  
0
32  
M5  
0
16  
M4  
0
8
M3  
1
4
M2  
0
2
M1  
1
1
M0  
0
VCO Frequency  
(MHz)  
M Divide  
250  
275  
10  
11  
0
0
0
0
0
1
0
1
1
650  
675  
700  
26  
27  
28  
0
0
0
0
1
1
0
1
0
0
0
0
0
1
1
0
1
1
0
0
0
0
1
1
1
0
0
NOTE 1: These M divide values and the resulting frequencies correspond to crystal or TEST_CLK input frequency  
of 25MHz.  
TABLE 3C. PROGRAMMABLE OUTPUT DIVIDER FUNCTION TABLE  
Inputs  
Output Frequency (MHz)  
N Divider Value  
N1  
N0  
0
Minimum  
250  
Maximum  
700  
0
0
1
1
1
2
4
8
1
125  
350  
0
62.5  
175  
1
31.25  
87.5  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
4
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
DD  
Inputs, V  
-0.5V to VDD + 0.5 V  
-0.5V to VDD + 0.5V  
47.9°C/W (0 lfpm)  
-65°C to 150°C  
I
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
Outputs, VO  
PackageThermal Impedance, θ  
JA  
StorageTemperature, T  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum Units  
VDD  
VDDA  
IDD  
Core Supply Voltage  
3.465  
3.465  
182  
V
Analog Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
V
mA  
mA  
IDDA  
16  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VDD = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
M0-M8, N0, N1, MR, nP_LOAD,  
S_CLOCK, S_DATA, S_LOAD,  
XTAL_SEL, VCO_SEL  
2
V
V
DD + 0.3  
DD + 0.3  
0.8  
V
V
Input  
VIH  
High Voltage  
TEST_CLK  
2
M0-M8, N0, N1, MR, nP_LOAD,  
S_CLOCK, S_DATA, S_LOAD,  
XTAL_SEL, VCO_SEL  
-0.3  
-0.3  
V
Input  
VIL  
Low Voltage  
TEST_CLK  
1.3  
V
M0-M4, M6-M8, N0, N1, MR,  
nP_LOAD, S_CLOCK, S_DATA,  
S_LOAD,  
VDD = VIN = 3.465V  
150  
µA  
Input  
IIH  
High Current  
M5, XTAL_SEL, VCO_SEL  
V
DD = VIN = 3.465V  
VDD = 3.465V,  
5
M0-M4, M6-M8, N0, N1, MR,  
nP_LOAD, S_CLOCK, S_DATA,  
S_LOAD,  
-5  
µA  
V
IN = 0V  
VDD = 3.465V,  
IN = 0V  
Input  
IIL  
Low Current  
M5, XTAL_SEL, VCO_SEL  
-150  
2.6  
V
Output  
VOH  
TEST; NOTE 1  
TEST; NOTE 1  
V
V
High Voltage  
Output  
VOL  
0.5  
Low Voltage  
NOTE 1: Outputs terminated with 50Ω to VDD/2. See Parameter Measurement Information section,  
"3.3V Output Load Test Circuit".  
TABLE 4C. LVDS DC CHARACTERISTICS, VDD = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
VOD  
Differential Output Voltage  
250  
450  
600  
50  
mV  
mV  
V
Δ VOD  
VOS  
VOD Magnitude Change  
Offset Voltage  
1.125  
1.4  
1.6  
50  
Δ VOS  
VOS Magnitude Change  
mV  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
5
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
TABLE 5. INPUT FREQUENCY CHARACTERISTICS, VDD = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
TEST_CLK; NOTE 1  
10  
10  
25  
25  
50  
MHz  
MHz  
MHz  
XTAL_IN, XTAL_OUT;  
NOTE 1  
fIN  
Input Frequency  
S_CLOCK  
NOTE 1: For the input crystal and TEST_CLK frequency range the M value must be set for the VCO to operate within the  
250MHz to 700MHz range. Using the minimum input frequency of 10MHz valid values of M are 25 M 70. Using the  
maximum frequency of 25MHz valid values of M are 10 M 28.  
TABLE 6. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
10  
25  
50  
7
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
pF  
1
mW  
TABLE 7. AC CHARACTERISTICS, VDD = 3.3V 5%, TA = -40°C TO 85°C  
Symbol Parameter  
FOUT Output Frequency  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
MHz  
ps  
31.25  
700  
32  
N = 1, 2  
N = 4  
18  
29  
t
jit(cc)  
Cycle-to-Cycle Jitter; NOTE 1, 3  
55  
ps  
t
t
jit(per)  
sk(o)  
Period Jitter, RMS; NOTE 1, 3  
Output Skew; NOTE 2, 3  
Output Rise/Fall Time  
3.5  
11  
ps  
15  
ps  
tR / tF  
20% to 80%  
150  
750  
ps  
M, N to nP_LOAD  
5
ns  
tS  
Setup Time S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to nP_LOAD  
5
ns  
5
ns  
5
ns  
tH  
Hold Time  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
5
ns  
5
47  
ns  
odc  
tPW  
Output Duty Cycle; NOTE 4  
Output Pulse Width  
PLL Lock Time  
N > 1  
N = 1  
53  
%
tPeriod/2 - 150  
tPeriod/2 + 150  
1
ps  
tLOCK  
ms  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established  
when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet  
specifications after thermal equilibrium has been reached under these conditions.  
NOTE 1: Jitter performance using XTAL inputs.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: In the Application Section, please refer to the application note, "Differential Duty Cycle Improvement".  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
6
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
PARAMETER MEASUREMENT INFORMATION  
VDD  
out  
out  
SCOPE  
Qx  
DC Input  
LVDS  
Power Supply  
Float GND  
LVDS  
+
-
nQx  
VOS/Δ VOS  
OFFSET VOLTAGE SETUP  
3.3V OUTPUT LOAD TEST CIRCUIT  
VDD  
nFOUTx  
FOUTx  
out  
LVDS  
DC Input  
100  
VOD/Δ VOD  
nFOUTy  
FOUTy  
out  
tsk(o)  
DIFFERENTIAL OUTPUT VOLTAGE SETUP  
OUTPUT SKEW  
VOH  
nFOUT0,  
nFOUT1  
VREF  
FOUT0,  
FOUT1  
VOL  
tcycle n  
tcycle n+1  
1σ contains 68.26% of all measurements  
2σ contains 95.4% of all measurements  
3σ contains 99.73% of all measurements  
4σ contains 99.99366% of all measurements  
6σ contains (100-1.973x10-7)% of all measurements  
tjit(cc) = tcycle n –tcycle n+1  
1000 Cycles  
Histogram  
Reference Point  
(Trigger Edge)  
Mean Period  
(First edge after trigger)  
Cycle-to-Cycle Jitter  
Period Jitter  
nFOUT0, nFOUT1  
FOUT0, FOUT1  
80%  
80%  
VSWING  
tPW  
Clock  
20%  
Outputs  
20%  
tPERIOD  
tF  
tR  
tPW  
odc =  
x 100%  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
OUTPUT RISE/FALL TIME  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
7
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
APPLICATION INFORMATION  
STORAGE AREA NETWORKS  
A variety of technologies are used for interconnection of the quencies used as well as the settings for the ICS8442BI to  
elements within a SAN.The tables below lists the common fre- generate the appropriate frequency.  
Table 8. Common SANs Application Frequencies  
Reference Frequency to SERDES  
(MHz)  
Crystal Frequency  
(MHz)  
Interconnect Technology  
Gigabit Ethernet  
Fibre Channel  
Clock Rate  
1.25 GHz  
125, 250, 156.25  
106.25, 53.125, 132.8125  
125, 250  
25, 19.53125  
16.6015625, 25  
25  
FC1 1.0625 GHz  
FC2 2.1250 GHz  
Infiniband  
2.5 GHz  
Table 9. Configuration Details for SANs Applications  
ICS8442BI  
ICS8442BI  
M & N Settings  
Interconnect  
Technology  
Crystal Frequency  
(MHz)  
Output Frequency  
to SERDES  
(MHz)  
M8 M7 M6 M5 M4 M3 M2 M1 M0 N1 N0  
25  
125  
250  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
1
0
1
1
0
1
1
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
1
0
1
1
1
1
1
1
0
0
1
0
0
1
0
0
0
1
25  
Gigabit Ethernet  
25  
156.25  
156.25  
53.125  
106.25  
132.8125  
125  
19.53125  
25  
Fiber Channel 1  
Fiber Channel 2  
Infiniband  
25  
16.6015625  
25  
25  
250  
POWER SUPPLY FILTERINGT ECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8442BI provides  
separate power supplies to isolate any high switching noise  
from the outputs to the internal PLL. VDD and VDDA, should  
be individually connected to the power supply plane through  
vias, and bypass capacitors should be used for each pin. To  
achieve optimum jitter performance, better power supply  
isolation is required. Figure 2 illustrates how a 10Ω along  
|with a 10µF and a 0.01µF bypass capacitor should be  
connected to each VDDA pin.  
3.3V  
VDD  
.01µF  
.01µF  
10Ω  
VDDA  
10µF  
FIGURE 2. POWER SUPPLY FILTERING  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
8
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
CRYSTAL INPUT INTERFACE  
A crystal can be characterized for either series or parallel mode suitable for most applications. Additional accuracy can be  
operation.The ICS8442BI has a built-in crystal oscillator circuit. achieved by adding two small capacitors C1 and C2 as shown in  
This interface can accept either a series or parallel crystal without Figure 3.Typical results using parallel 18pF crystals are shown  
additional components and generate frequencies with accuracy inTable 10.  
XTAL_IN  
C1  
18p  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
22p  
Figure 3. CRYSTAL INPUt INTERFACE  
LVDS DRIVER TERMINATION  
A general LVDS interface is shown in Figure 4. In a 100Ω differ- put. For a multiple LVDS outputs buffer, if only partial outputs  
ential transmission line environment, LVDS drivers require a are used, it is recommended to terminate the un-used outputs.  
matched load termination of 100Ω across near the receiver in-  
3.3V  
Zo = 50 Ohm  
3.3V  
LVDS_DRIVER  
CLK  
R1  
100  
nCLK  
HiPerClockS  
Zo = 50 Ohm  
100Ω DifferentialTransmission Line  
FIGURE 4. TYPICAL LVDS DRIVERTERMINATION  
DIFFERENTIAL DUTY CYCLE IMPROVEMENT  
The schematic below is recommended for applications using the  
÷1 output configuration for improving the differential duty cycle.  
Vcc = 3.3V  
R2  
1.3k  
R4  
1.3k  
C1  
Zo = 50  
+
-
R1  
100  
.1uf  
C2  
Zo = 50  
.1uf  
R3  
800  
R5  
800  
LVDS Driver  
Receiver_dif  
FIGURE 5. DIFFERENTIAL DUTY CYCLE IMPROVEMENT  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
9
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
LAYOUT GUIDELINE  
The schematic of the ICS8442BI layout example used in this  
layout guideline is shown in Figure 5A. The ICS8442BI recom-  
mended PCB board layout for this example is shown in Figure  
5B. This layout example is used as a general guideline. The  
layout in the actual system will depend on the selected com-  
ponent types, the density of the components, the density of the  
traces, and the stack up of the P.C. board.  
C1  
C2  
X1  
U1  
VDD  
1
2
3
4
5
6
7
8
24  
R7  
10  
M5  
M6  
M7  
M8  
N0  
N1  
nc  
X_OUT  
T_CLK  
nXTAL_SEL  
VDDA  
S_LOAD  
S_DATA  
S_CLOCK  
MR  
23  
22  
21  
20  
19  
18  
17  
VDDA  
C11  
0.01u  
C16  
10u  
GND  
ICS8442  
Zo = 50 Ohm  
C14  
0.1u  
+
-
R1  
100  
C15  
0.1u  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
R2  
100  
FIGURE 5A. RECOMMENDED SCHEMATIC LAYOUT  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
10  
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
The following component footprints are used in this layout  
example: All the resistors and capacitors are size 0603.  
traces should be routed first and should be locked prior to routing  
other signal traces.  
• The traces with 50Ω transmission lines TL1 andTL2 at  
FOUT and nFOUT should have equal delay and run ad-  
jacent to each other.Avoid sharp angles on the clock trace.  
Sharp angle turns cause the characteristic impedance to  
change on the transmission lines.  
POWER AND GROUNDING  
Place the decoupling capacitors C14 and C15 as close as pos-  
sible to the power pins. If space allows, placing the decoupling  
capacitor at the component side is preferred. This can reduce  
unwanted inductance between the decoupling capacitor and the  
power pin generated by the via.  
• Keep the clock traces on the same layer.Whenever pos-  
sible, avoid any vias on the clock traces. Any via on the  
trace can affect the trace characteristic impedance and  
hence degrade signal quality.  
Maximize the pad size of the power (ground) at the decoupling  
capacitor.Maximize the number of vias between power (ground)  
and the pads.This can reduce the inductance between the power  
(ground) plane and the component power (ground) pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow more space between the clock trace  
and the other signal trace.  
If VCCA shares the same power supply with VCC, insert the RC  
filter R7, C11, and C16 in between. Place this RC filter as close  
to theVCCA as possible.  
• Make sure no other signal trace is routed between the  
clock trace pair.  
CLOCK TRACES AND TERMINATION  
The matching termination resistors R1 and R2 should be located  
as close to the receiver input pins as possible. Other termination  
scheme can also be used but is not shown in this example.  
The component placements, locations and orientations should  
be arranged to achieve the best clock signal quality. Poor clock  
signal quality can degrade the system performance or cause  
system failure. In the synchronous high-speed digital system,  
the clock signal is less tolerable to poor signal quality than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The trace shape and the trace  
delay might be restricted by the available space on the board and  
the component location.While routing the traces, the clock signal  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
24 (XTAL_OUT) and 25 (XTAL_IN).The trace length between the  
X1 and U1 should be kept to a minimum to avoid unwanted para-  
sitic inductance and capacitance. Other signal traces should not  
be routed near the crystal traces.  
GND  
C1  
C2  
VDD  
X1  
VIA  
U1  
PIN 1  
C16  
C11  
VDDA  
R7  
Close to the input  
pins of the  
receiver  
For FOUT0/n FOUT0  
output TL1, TL1N are  
50 Ohm traces and  
equal length  
C14  
TL1  
R1  
Same requirement fo  
FOUT1/nFOUT1  
C15  
TL1N  
FIGURE 5B. PCB BOARD LAYOUT FOR ICS8442BI  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
11  
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
RELIABILITY INFORMATION  
TABLE 10. θ VS. AIR FLOW TABLE FOR 32 LEAD LQFP  
JA  
θ byVelocity (Linear Feet per Minute)  
JA  
0
67.8°C/W  
200  
55.9°C/W  
500  
50.1°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
47.9°C/W  
42.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8442BI is: 3662  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
12  
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
PACKAGE OUTLINE - Y SUFFIX FOR 32 LEAD LQFP  
TABLE 11. PACKAGE DIMENSIONS  
JEDEC VARIATION  
ALL DIMENSIONS IN MILLIMETERS  
BBA  
SYMBOL  
MINIMUM  
NOMINAL  
MAXIMUM  
N
A
32  
--  
--  
--  
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
A2  
b
0.05  
1.35  
0.30  
0.09  
1.40  
0.37  
c
--  
D
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
9.00 BASIC  
7.00 BASIC  
5.60 Ref.  
0.80 BASIC  
0.60  
D1  
D2  
E
E1  
E2  
e
L
0.45  
0.75  
θ
--  
0°  
7°  
ccc  
--  
--  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
13  
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
TABLE 12. ORDERING INFORMATION  
Part/Order Number  
8442BYILF  
Marking  
Package  
Shipping Packaging  
tray  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
ICS8442BYILF  
ICS8442BYILF  
32 Lead "Lead-Free" LQFP  
32 Lead "Lead-Free" LQFP  
8442BYILFT  
tape & reel  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
14  
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Per PCN: N1308-01 Effective date 1/31/2014  
Date  
Changed part number from ICS8442I to ICS8442BI throughout the datasheet.  
Power Supply DC Characteristics Table - changed IDD spec from 155mA max. to  
182mA max; and changed IDDA spec from 20mA max. to 16mA max.  
Ordering Information Table - changed ordering information and marking revision  
from "A" to "B". Deleted leaded part information.  
T4A  
T12  
5
A
11/18/13  
14  
ICS8442BYI REVISION A NOVEMBER 18, 2013  
15  
©2013 Integrated Device Technology, Inc.  
ICS8442BI Data Sheet  
700MHz, CRYSTAL OSCILLATOR-TO-DIFFERENTIAL LVDS FREQUENCY SYNTHESIZER  
We’ve Got Your Timing Solution.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
800-345-7015 (inside USA)  
Tech Support  
netcom@idt.com  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document, including  
descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed  
to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT’s  
products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual  
property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly  
affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party  
owners.  
Copyright 2013. All rights reserved.  
厂商 型号 描述 页数 下载

IDT

EXE8602-DNT [ 71 – 86 GHz Power Detector ] 16 页

MURATA

EXEPBLCKA 设计工程套装[ DESIGN ENGINEERING KITS ] 39 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.188171s