找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

LZ1-10CW02-0000

型号:

LZ1-10CW02-0000

品牌:

ETC[ ETC ]

页数:

18 页

PDF大小:

1320 K

High Luminous Efficacy Cool White LED Emitter  
LZ1-00CW02  
Key Features  
.
.
.
.
.
.
.
.
.
.
High Luminous Efficacy Cool White LED  
Ultra-small foot print 4.4mm x 4.4mm  
Surface mount ceramic package with integrated glass lens  
Low Thermal Resistance (6.0°C/W)  
Electrically neutral thermal path  
Spatial color uniformity across radiation pattern  
JEDEC Level 1 standard for Moisture Sensitivity Level  
Lead (Pb) free and RoHS compliant  
Reflow solderable  
Available on tape and reel or with MCPCB  
Typical Applications  
.
.
.
.
.
.
.
Architectural lighting  
Street lighting  
Display Backlighting  
Flashlight and Portable lighting  
Signaling  
Automotive  
Horticulture  
Description  
The LZ1-00CW02 Cool White LED emitter provides 315 lumens at 3.2W power dissipation in an extremely small  
package. With a 4.4mm x 4.4mm footprint, this package provides exceptional luminous flux density. LED Engin’s  
patent-pending thermally insulated phosphor layer provides a spatially uniform color across the radiation pattern  
and a consistent CCT over time and temperature. The high quality materials used in the package are chosen to  
optimize light output and minimize stresses which results in monumental reliability and lumen maintenance. The  
robust product design thrives in outdoor applications with high ambient temperatures and high humidity.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Part number options  
Base part number  
Part number  
Description  
LZ1-00CW02-xxxx  
LZ1-10CW02-xxxx  
LZ1 emitter  
LZ1 emitter on Standard Star MCPCB  
Bin kit option codes  
CW, Cool White (5000K 6500K)  
Min  
flux  
Bin  
Kit number  
Chromaticity bins  
Description  
suffix  
0055  
0065  
Flux bin P and above; full distribution  
flux; 5500K bin  
Flux bin P and above; full distribution  
flux; 6500K bin  
2U, 2Y, 3U, 2A, 2D, 3A, 2B, 2C, 3B, 2V, 2X, 3V  
1U, 1A, 1B, 1V, 1Y, 1D, 1C, 1X, 2U, 2A, 2B, 2V  
P
P
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
2
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Cool White Chromaticity Groups  
0.40  
3X  
0.38  
0.36  
0.34  
0.32  
0.30  
0.28  
3V  
3C  
2X  
2C  
3B  
2V  
Planckian Locus  
3D  
1X  
1C  
2B  
3A  
3U  
1V  
3Y  
2D  
2Y  
2A  
2U  
1B  
1D  
1Y  
1A  
1U  
0.28  
0.30  
0.32  
0.34  
0.36  
0.38  
CIEx  
Standard Chromaticity Groups plotted on excerpt from the CIE 1931 (2°) x-y Chromaticity Diagram.  
Coordinates are listed below in the table.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
3
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Cool White Bin Coordinates  
Bin code CIEx  
0.3068  
CIEy  
Bin code CIEx  
0.3048  
CIEy  
0.3207  
0.329  
Bin code CIEx  
0.3028  
CIEy  
Bin code CIEx  
0.3005  
CIEy  
0.3113  
0.3186  
0.3059  
0.2993  
0.3113  
0.3186  
0.3261  
0.312  
0.3059  
0.3186  
0.3243  
0.33  
0.3304  
0.3391  
0.329  
0.3207  
0.3304  
0.3391  
0.3481  
0.3373  
0.329  
0.3391  
0.3462  
0.3538  
0.3417  
0.335  
0.3462  
0.3538  
0.3616  
0.349  
0.3417  
0.3538  
0.3616  
0.3687  
0.3554  
0.349  
0.3616  
0.3687  
0.376  
0.3415  
0.3509  
0.3391  
0.3304  
0.3415  
0.3509  
0.3602  
0.3481  
0.3391  
0.3509  
0.3602  
0.369  
0.3538  
0.3462  
0.3602  
0.369  
0.3762  
0.3616  
0.3538  
0.369  
0.3762  
0.384  
0.3687  
0.3616  
0.3762  
0.384  
0.3907  
0.376  
0.3687  
0.384  
0.3144  
0.3161  
0.3093  
0.3068  
0.3144  
0.3221  
0.3231  
0.3161  
0.3144  
0.3222  
0.329  
0.313  
0.3115  
0.313  
0.3099  
0.3115  
0.3028  
0.3005  
0.3099  
0.3196  
0.3205  
0.3115  
0.3099  
0.3196  
0.329  
1U  
1Y  
2U  
2Y  
3U  
3Y  
1A  
1D  
2A  
2D  
3A  
3D  
0.3144  
0.3068  
0.3048  
0.313  
0.3213  
0.3221  
0.3144  
0.313  
0.3215  
0.329  
0.329  
0.3222  
0.3215  
0.329  
0.3371  
0.3366  
0.329  
0.3186  
0.3113  
0.3207  
0.329  
0.3373  
0.3261  
0.3186  
0.329  
0.335  
0.3417  
0.33  
0.3243  
0.335  
0.3417  
0.349  
0.3369  
0.33  
0.3417  
0.349  
0.3554  
0.3427  
0.3369  
0.349  
0.3554  
0.362  
1B  
1C  
2B  
2C  
3B  
3C  
1V  
1X  
2V  
2X  
3V  
3X  
0.3048  
0.3028  
0.3115  
0.3205  
0.3213  
0.313  
0.3115  
0.3207  
0.329  
0.329  
0.318  
0.312  
0.329  
0.329  
0.3231  
0.3222  
0.329  
0.3215  
0.3207  
0.329  
0.3207  
0.3196  
0.329  
0.3243  
0.33  
0.3369  
0.3245  
0.318  
0.3366  
0.3361  
0.329  
0.3376  
0.3371  
0.329  
0.3381  
0.3376  
0.329  
0.329  
0.3366  
0.344  
0.33  
0.329  
0.329  
0.329  
0.3381  
0.348  
0.3369  
0.3428  
0.3299  
0.3245  
0.3369  
0.3428  
0.3487  
0.3339  
0.3299  
0.3428  
0.3371  
0.3451  
0.344  
0.3366  
0.3371  
0.3451  
0.3533  
0.3515  
0.344  
0.3376  
0.3463  
0.3451  
0.3371  
0.3376  
0.3463  
0.3551  
0.3533  
0.3451  
0.3463  
0.3429  
0.3361  
0.3366  
0.344  
0.3463  
0.3376  
0.3381  
0.348  
0.3515  
0.3495  
0.3429  
0.344  
0.3571  
0.3551  
0.3463  
0.348  
0.3487  
0.3427  
0.3554  
0.362  
0.3554  
0.3687  
0.3451  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
4
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Luminous Flux Bins  
Table 1:  
Minimum  
Maximum  
Typical  
Luminous Flux (ΦV)  
@ IF = 1200mA[2]  
(lm)  
Bin  
Code  
Luminous Flux (ΦV)  
@ IF = 1000mA[1,2]  
(lm)  
Luminous Flux (ΦV)  
@ IF = 1000mA[1,2]  
(lm)  
P
Q
R
182  
228  
285  
228  
285  
356  
229  
282  
310  
Notes for Table 1:  
1.  
Luminous flux performance is measured at 10ms pulse, TC = 25oC. LED Engin maintains a tolerance of ± 10% on flux measurements.  
Forward Voltage Bins  
Table 2:  
Minimum  
Maximum  
Forward Voltage (VF)  
@ IF = 1000mA[1]  
(V)  
Bin  
Code  
Forward Voltage (VF)  
@ IF = 1000mA[1]  
(V)  
0
2.8  
3.8  
Notes for Table 2:  
1.  
Forward voltage is measured at 10ms pulse, TC = 25oC. LED Engin maintains a tolerance of ± 0.04V for forward voltage measurements.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
5
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Absolute Maximum Ratings  
Table 3:  
Parameter  
Symbol  
Value  
Unit  
mA  
mA  
mA  
V
°C  
°C  
°C  
DC Forward Current at TJ(MAX)=135°C[1]  
DC Forward Current at TJ(MAX)=150°C[1]  
Peak Pulsed Forward Current[2]  
Reverse Voltage  
IF  
IF  
IFP  
VR  
Tstg  
TJ  
1200  
1000  
2000  
See Note 3  
-40 ~ +150  
150  
Storage Temperature  
Junction Temperature  
Soldering Temperature[4]  
Tsol  
260  
Notes for Table 3:  
1.  
2:  
3.  
4.  
5.  
Maximum DC forward current is determined by the overall thermal resistance and ambient temperature. Follow the curves in Figure 11 for current derating.  
Pulse forward current conditions: Pulse Width ≤ 10msec and Duty cycle ≤ 10%.  
LEDs are not designed to be reverse biased.  
Solder conditions per JEDEC J-STD-020D. See Reflow Soldering Profile Figure 3.  
LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZ1-00CW02 in an electrostatic protected area (EPA).  
An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1.  
Optical Characteristics @ TC = 25°C  
Table 4:  
Parameter  
Symbol  
Typical  
Unit  
Luminous Flux (@ IF = 1000mA/ 1200mA)  
PPF[1] 400-700nm (@ IF = 1000mA/ 1200mA)  
Luminous Efficacy (@ IF = 350mA)  
Luminous Efficacy (@ IF = 1000mA)  
Correlated Color Temperature  
Color Rendering Index (CRI)  
ΦV  
315/ 360  
4.8/ 5.5  
113  
98  
5500  
75  
lm  
umol/s  
lm/W  
lm/W  
K
η
η
CCT  
Ra  
1/2  
Θ0.9V  
Viewing Angle[2]  
95  
115  
Degrees  
Degrees  
Total Included Angle[3]  
Notes for Table 4:  
1.  
2.  
3.  
PPF is Photosynthetic Photon Flux.  
Viewing Angle is the off axis angle from emitter centerline where the luminous intensity is ½ of the peak value.  
Total Included Angle is the total angle that includes 90% of the total luminous flux.  
Electrical Characteristics @ TC = 25°C  
Table 5:  
Parameter  
Symbol  
Typical  
3.20  
3.25  
Unit  
V
V
Forward Voltage (@ IF = 1000mA)  
Forward Voltage (@ IF = 1200mA)  
VF  
VF  
Temperature Coefficient  
of Forward Voltage  
ΔVF/ΔTJ  
J-C  
-2.0  
6.0  
mV/°C  
°C/W  
Thermal Resistance  
(Junction to Case)  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
6
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
IPC/JEDEC Moisture Sensitivity Level  
Table 6 - IPC/JEDEC J-STD-20D.1 MSL Classification:  
Soak Requirements  
Floor Life  
Conditions  
Standard  
Conditions  
Accelerated  
Level  
1
Time  
Time (hrs)  
Time (hrs)  
Conditions  
≤ 30°C/  
168  
+5/-0  
85°C/  
85% RH  
Unlimited  
n/a  
n/a  
85% RH  
Notes for Table 6:  
1.  
The standard soak time includes a default value of 24 hours for semiconductor manufacturer’s exposure time (MET) between bake and bag and  
includes the maximum time allowed out of the bag at the distributor’s facility.  
Average Lumen Maintenance Projections  
Lumen maintenance generally describes the ability of a lamp to retain its output over time. The useful lifetime for  
solid state lighting devices (Power LEDs) is also defined as Lumen Maintenance, with the percentage of the original  
light output remaining at a defined time period.  
Based on long-term WHTOL testing, LED Engin projects that the LZ Series will deliver, on average, above 70%  
Lumen Maintenance at 50,000 hours of operation at a forward current of 1000 mA. This projection is based on  
constant current operation with junction temperature maintained at or below 125°C.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
7
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Mechanical Dimensions (mm)  
Pin Out (Type 2)[2]  
Pad  
Function  
1
Anode  
2
Cathode  
Cathode  
Anode  
3
4
5[3]  
Thermal  
1
2
5
4
3
Figure 1: Package outline drawing  
Notes for Figure 1:  
1.  
2.  
3.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
This emitter pin-out is reversed to that of LZ1-00xx00 and LZ1-00Rx02.  
Thermal contact, Pad 5, is electrically neutral.  
Recommended Solder Pad Layout (mm)  
Non-pedestal MCPCB Design  
Pedestal MCPCB Design  
Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad for non-pedestal and pedestal design.  
Notes for Figure 2a:  
1. Unless otherwise noted, the tolerance = ± 0.20 mm.  
2. Pedestal MCPCB allows the emitter thermal slug to be soldered directly to the metal core of the MCPCB. Such MCPCB eliminate the high thermal resistance  
dielectric layer that standard MCPCB technologies use in between the emitter thermal slug and the metal core of the MCPCB, thus lowering the overall system  
thermal resistance.  
3. LED Engin recommends x-ray sample monitoring for solder voids underneath the emitter solder pins, especially the thermal pad. The total area covered by  
solder voids should be less than 20% of the total emitter thermal pad area. Excessive solder voids will increase the emitter to MCPCB thermal resistance and  
may lead to higher failure rates due to thermal over stress.  
4. This emitter is compatible with all LZ1 MCPCBs provided that the MCPCB design follows the recommended solder mask layout (Figure 2b).  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
8
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Recommended Solder Mask Layout (mm)  
Non-pedestal MCPCB Design  
Pedestal MCPCB Design  
Figure 2b: Recommended solder mask opening for anode, cathode, and thermal pad for non-pedestal and pedestal design.  
Note for Figure 2b:  
1. Unless otherwise noted, the tolerance = ± 0.20 mm.  
Recommended 8mil Stencil Apertures Layout (mm)  
Figure 2c: Recommended 8mil stencil apertures layout for anode, cathode, and thermal pad.  
Note for Figure 2c:  
1.  
Unless otherwise noted, the tolerance = ± 0.20 mm.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
9
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Reflow Soldering Profile  
Figure 3: Reflow soldering profile for lead free soldering.  
Typical Radiation Pattern  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
-90 -80 -70 -60 -50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Angular Displacement (Degrees)  
Figure 4: Typical representative spatial radiation pattern.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
10  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Typical Relative Spectral Power Distribution  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
400  
450  
500  
550  
600  
650  
700  
750  
800  
Wavelength (nm)  
Figure 5: Relative spectral power vs. wavelength @ TC = 25°C.  
Typical Forward Current Characteristics  
1,400  
1,200  
1,000  
800  
600  
400  
200  
0
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
VF - Forward Voltage (V)  
Figure 6: Typical forward current vs. forward voltage @ TC = 25°C.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
11  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Typical Relative Light Output over Current  
120  
100  
80  
60  
40  
20  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
IF - Forward Current (mA)  
Figure 7: Typical relative light output vs. forward current @ TC = 25°C.  
Typical Relative Light Output over Temperature  
120  
100  
80  
60  
40  
20  
0
0
20  
40  
60  
80  
100  
120  
TC - Case Temperature (oC)  
Figure 8: Typical relative light output vs. case temperature.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
12  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Typical Chromaticity Coordinate Shift over Current  
0.020  
0.015  
0.010  
0.005  
0.000  
-0.005  
-0.010  
-0.015  
-0.020  
Δ Cx  
Δ Cy  
0
200  
400  
600  
800  
1000  
1200  
1400  
IF - Forward Current (mA)  
Figure 9: Typical chromaticity coordinate shift vs. forward current @ TC = 25°C.  
Typical Chromaticity Coordinate Shift over Temperature  
0.020  
0.015  
0.010  
0.005  
0.000  
-0.005  
-0.010  
-0.015  
-0.020  
Δ Cx  
Δ Cy  
0
20  
40  
60  
80  
100  
120  
TC - Case Temperature (oC)  
Figure 10: Typical chromaticity coordinate shift vs. case temperature  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
13  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Current De-rating  
1400  
1200  
1000  
800  
600  
RΘJA = 9°C/W  
RΘJA = 12°C/W  
RΘJA = 15°C/W  
400  
200  
0
0
25  
50  
75  
100  
125  
150  
(TJ(MAX) = 135)  
TA - Ambient Temperature (°C)  
Figure 11: Maximum forward current vs. ambient temperature  
Notes for Figure 11:  
1.  
2.  
J-C [Junction to Case Thermal Resistance] for the LZ1-00CW02 is typically 6.0°C/W.  
J-A [Junction to Ambient Thermal Resistance] = RΘJ-C + RΘC-A [Case to Ambient Thermal Resistance].  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
14  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
Emitter Tape and Reel Specifications (mm)  
Figure 12: Emitter carrier tape specifications (mm).  
Ø 178mm (SMALL REEL)  
Ø 330mm (LARGE REEL)  
Figure 13: Emitter reel specifications (mm).  
Notes:  
1.  
2.  
3.  
Small reel quantity: up to 500 emitters  
Large reel quantity: 501-2500 emitters.  
Single flux bin and single wavelength bin per reel.  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
15  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
LZ1 MCPCB Family  
Emitter + MCPCB  
Thermal Resistance  
(oC/W)  
Diameter  
Typical VF Typical IF  
Part number Type of MCPCB  
(mm)  
(V)  
(mA)  
LZ1-1xxxxx 1-channel Star  
19.9  
6.0 + 1.5 = 7.5  
3.2  
1000  
Mechanical Mounting of MCPCB  
.
MCPCB bending should be avoided as it will cause mechanical stress on the emitter, which could lead to  
substrate cracking and subsequently LED dies cracking.  
.
To avoid MCPCB bending:  
o
o
Special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws.  
Care must be taken when securing the board to the heat sink. This can be done by tightening three M3  
screws (or #4-40) in steps and not all the way through at once. Using fewer than three screws will  
increase the likelihood of board bending.  
o
o
It is recommended to always use plastics washers in combinations with the three screws.  
If non-taped holes are used with self-tapping screws, it is advised to back out the screws slightly after  
tightening (with controlled torque) and then re-tighten the screws again.  
Thermal interface material  
.
.
.
.
To properly transfer heat from LED emitter to heat sink, a thermally conductive material is required when  
mounting the MCPCB on to the heat sink.  
There are several varieties of such material: thermal paste, thermal pads, phase change materials and thermal  
epoxies. An example of such material is Electrolube EHTC.  
It is critical to verify the material’s thermal resistance to be sufficient for the selected emitter and its operating  
conditions.  
It is recommended to verify thermal design by measuring case temperature (Tc) during design phase.  
Wire soldering  
.
To ease soldering wire to MCPCB process, it is advised to preheat the MCPCB on a hot plate of 125-150oC.  
Subsequently, apply the solder and additional heat from the solder iron will initiate a good solder reflow. It is  
recommended to use a solder iron of more than 60W.  
.
It is advised to use lead-free, no-clean solder. For example: SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn:  
24-7068-7601)  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
16  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
LZ1-1xxxxx  
1 channel, Standard Star MCPCB (1x1) Dimensions (mm)  
Notes:  
Unless otherwise noted, the tolerance = ± 0.2 mm.  
Slots in MCPCB are for M3 or #4-40 mounting screws.  
LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces.  
LED Engin recommends using thermal interface material when attaching the MCPCB to a heat sink.  
The thermal resistance of the MCPCB is: RΘC-B 1.5°C/W  
Components used  
MCPCB:  
HT04503  
(Bergquist)  
ESD/TVS diode: BZT52C5V1LP-7  
(Diodes, Inc., for 1 LED die)  
(Vishay Semiconductors, for 1 LED die)  
VBUS05L1-DD1  
Pad layout  
MCPCB  
Ch.  
String/die  
Function  
Pad  
1,2,3  
4,5,6  
Cathode -  
Anode +  
1
1/A  
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
17  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
About LED Engin  
LED Engin, an OSRAM business based in California’s Silicon Valley, develops, manufactures, and sells advanced LED  
emitters, optics and light engines to create uncompromised lighting experiences for a wide range of  
entertainment, architectural, general lighting and specialty applications. LuxiGenTM multi-die emitter and  
secondary lens combinations reliably deliver industry-leading flux density, upwards of 5000 quality lumens to a  
target, in a wide spectrum of colors including whites, tunable whites, multi-color and UV LEDs in a unique patented  
compact ceramic package. Our LuxiTuneTM series of tunable white lighting modules leverage our LuxiGen emitters  
and lenses to deliver quality, control, freedom and high density tunable white light solutions for a broad range of  
new recessed and downlighting applications. The small size, yet remarkably powerful beam output and superior in-  
source color mixing, allows for a previously unobtainable freedom of design wherever high-flux density, directional  
light is required. LED Engin is committed to providing products that conserve natural resources and reduce  
greenhouse emissions; and reserves the right to make changes to improve performance without notice.  
For more information, please contact LEDE-Sales@osram.com or +1 408 922-7200.  
.
COPYRIGHT © 2018 LED ENGIN. ALL RIGHTS RESERVED.  
LZ1-00CW02 (1.4 11/09/2018)  
18  
LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | em LEDE-Sales@osram.com | www.osram.us/ledengin  
厂商 型号 描述 页数 下载

ETC

LZ1-00B200-0000 [ LED EMITTER BLUE 465NM SMD ] 15 页

ETC

LZ1-00B200-0B34 [ LED EMITTER BLUE 465NM SMD ] 15 页

ETC

LZ1-00CW00-0000 [ LED LZ1 COOL WHITE 75CRI 4SMD ] 17 页

ETC

LZ1-00CW00-0050 [ LED LZ1 COOL WHITE 5000K 4SMD ] 17 页

ETC

LZ1-00CW00-0055 [ LED LZ1 COOL WHITE 5500K 4SMD ] 17 页

ETC

LZ1-00CW00-0056 [ LED LZ1 COOL WHITE 5600K 4SMD ] 17 页

ETC

LZ1-00NW00-0040 [ LED LZ1 NEUTRAL WHITE 4000K 4SMD ] 16 页

ETC

LZ1-00R200-0000 [ LED EMITTER RED 660NM SMD ] 16 页

ETC

LZ1-00R400-0000 [ EMITTER IR 850NM 1.2A SMD ] 17 页

ETC

LZ1-00UA00 [ High Efficacy VIOLET LED Emitter ] 19 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.199688s