找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

TZA3054AHN

型号:

TZA3054AHN

品牌:

PHILIPS[ PHILIPS SEMICONDUCTORS ]

页数:

32 页

PDF大小:

150 K

TZA3054A  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
Rev. 01 — 12 August 2004  
Objective data sheet  
1. General description  
The TZA3054A is a highly sensitive A-rate™ Limiting amplifier featuring ACE (Automatic  
Current Engine) functionality, Logarithmic Level Detect (LLD), Loss-of-Signal (LOS)  
detector and output jam function. The ACE functionality provides a limiting amplifier which  
achieves optimum performance (sensitivity, bandwidth, jitter and output eye pattern) for  
any bit rate with very low power consumption. This is achieved through automatic  
adjustment of the input bandwidth and the output slew rate by using built-in performance  
monitors. Manual adjustment is possible by programming the I2C-bus registers.  
The integrated I2C-bus controller allows for flexible configuration with a microcontroller,  
which minimizes the number of external connections and external components needed.  
Adjustment of the LOS threshold can be done either via the I2C-bus or with an external  
resistor. The output amplitude is selectable between a high or low value, or adjustable via  
the I2C-bus. The detected logarithmic signal level is indicated directly by a voltage on pin  
LLD, or by a binary value of an I2C-bus register. Furthermore, the junction temperature,  
the internal supply voltage and an external voltage can all be monitored through a built-in  
Analog-to-Digital Converter (ADC) which supports several diagnostic functions.  
These features make the TZA3054A ideally suited for application in modules, including  
Small Form Factor (SFF/SFP/iSFP) modules.  
The TZA3054A comes in a compact 3 × 4 mm2 HVQFN20 package, with the exposed die  
pad serving as the main ground connection.  
2. Features  
A-rate limiting amplifier; supporting any data rate between 100 Mbit/s and 3.2 Gbit/s,  
including data rates such as OC3, OC48, FC, 2FC and GE  
Very low power  
I2C-bus programmable  
Highly sensitive data input with 2.5 mV sensitivity  
On-chip DC offset compensation without external capacitor  
Automatic bandwidth and slew rate adjustment (ACE)  
Pin selectable output level, 500 mV or 1500 mV (p-p) differential  
Rise and fall times 40 ps typical at 3.2 Gbit/s  
Deterministic Jitter typically below 10 ps (p-p)  
Logarithmic Level Detect (LLD) from 1 mV to 1200 mV  
Input amplitude related Loss Of Signal (LOS) indicator with adjustable threshold  
2.9 V to 3.5 V supply voltage  
SFF-8074i and SFF-8472 compliant  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
Additional features with I2C-bus:  
Microcontroller controllable  
Temperature readout  
Supply voltage readout  
Logarithmic level detect readout  
External voltage readout  
Readout calibration  
Adjustable output level from 0 mV to 2000 mV (p-p) differential  
Adjustable LOS threshold without external components  
Programmable LOS hysteresis  
Offset compensation disable  
Status and interrupt reporting  
Polarity inversion  
Configurable LOS and JAM I/Os  
Auto Jam  
Adjustable bandwidth and slew rate.  
3. Applications  
Fiber optic modules: SFP, SFF, GBIC, 1 × 9 and 2 × 9  
Digital fiber optic receivers for Fiber Channel (FC), gigabit ethernet, infiniband and  
telecom applications.  
4. Ordering information  
Table 1:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TZA3054AHN  
HVQFN20 plastic heat sink bottom chip carrier; 20 leads; SOT797-1  
body 3 × 4 × 0.65 mm  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
2 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
5. Block diagram  
TZA3054A  
8
SCL  
SDA  
INTERRUPT/  
STATUS  
READOUT  
2
I C-BUS  
7
INTERFACE  
5
EXT  
T
j
19  
RREF  
REFERENCE  
CIRCUITS  
DIAGNOSTIC  
READOUT  
ADC  
LOS  
V
CC  
17  
LOSTH  
9
2
I C-bus  
LOS  
LLD  
18  
LLD  
2
3
13  
12  
BANDWIDTH  
ADJUSTMENT  
LIMITING  
AMPLIFIER  
SLEW RATE  
RF  
OUTPUT  
OUT  
IN  
OUTQ  
INQ  
2
2
I C-bus  
I C-bus  
10  
16  
JAM  
LVL  
2
I C-bus  
2
I C-bus  
001aab364  
Fig 1. Block diagram.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
3 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
6. Functional diagram  
Tj > 125 C  
T-alarm  
8
SCL  
INTERRUPT/  
STATUS  
READOUT  
2
V
< 3.0 V  
CC  
I C-BUS  
VCC-alarm  
7
INTERFACE  
SDA  
666 kΩ  
5
EXT  
ADC  
ADC-EXT  
T
j
19  
RREF  
ADC  
ADC  
ADC  
ADC  
ADC-TJ  
REFERENCE  
CIRCUITS  
333 kΩ  
V
CC  
ADC-VCC  
ADC-LOSTH  
ADC-LLD  
TZA3054A  
I2CLOSTH  
LOSIOTYPE  
17  
LOSTH  
VLOSTH  
LLD  
LOS  
9
1, 4  
LOS  
LLD  
V
DAC  
LOSTH  
CCI  
0 to 7 dB  
6, 15, 20, 21  
LOSPOL  
HYST  
GND  
18  
LLD  
11, 14  
V
CCO  
75 Ω  
75 Ω  
2
IN  
13  
BANDWIDTH  
ADJUSTMENT  
LIMITING  
AMPLIFIER  
SLEW RATE  
SLEWOCT  
RF  
OUTPUT  
50 Ω  
OUT  
50 Ω  
12  
3
OUTQ  
INQ  
1.6 V  
10 pF  
OFFSET  
OFFSET  
POLINV  
BWOCT  
AUTOJAM  
V
CC  
JAMPOL  
I2CJAM  
10  
16  
JAM  
LVL  
JAM  
V
CC  
I2CRFLVL  
RFLVL  
001aab373  
Fig 2. Functional diagram.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
4 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
7. Pinning information  
7.1 Pinning  
terminal 1  
index area  
1
2
3
4
14  
13  
12  
11  
V
V
CCO  
CCI  
IN  
OUT  
TZA3054A  
INQ  
OUTQ  
V
V
CCO  
CCI  
001aab365  
Transparent top view  
Fig 3. Pin configuration.  
7.2 Pin description  
Table 2:  
Pin description  
Symbol Pin  
Description  
VCCI  
IN  
1
supply voltage for RF input part  
non-inverted RF input  
2
INQ  
3
inverted RF input  
VCCI  
EXT  
GND  
SDA  
SCL  
LOS  
JAM  
VCCO  
OUTQ  
OUT  
VCCO  
GND  
LVL  
4
supply voltage for RF input part  
external voltage input  
5
6
ground  
7
I2C-bus data signal bi-directional  
I2C-bus clock signal input  
LOS open-drain output (active LOW)  
jam input (active LOW)  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
supply voltage for RF output part; analog part and digital part  
inverted RF output  
non-inverted RF output  
supply voltage for RF output part; analog part and digital part  
ground  
RF output signal level select  
LOSTH  
LLD  
loss of signal threshold adjustment  
logarithmic level detection  
RREF  
GND  
reference pin; for generating an external resistor related precision current  
ground  
RF ground plus die pad  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
5 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
8. Functional description  
8.1 RF input  
The TZA3054A is a highly sensitive limiting amplifier with an input voltage range from  
2.5 mV to 1200 mV (p-p) Single-Ended (SE). It is assumed that the inputs, requiring  
AC-coupling, carry a complementary signal with the specified peak-to-peak value (true  
differential excitation).  
1 V  
1 V  
TZA3054A  
IN  
50 Ω  
50 Ω  
1.6 V  
10 pF  
INQ  
die pad (21)  
001aab366  
Fig 4. RF input configuration.  
The TZA3054A includes a DC offset cancellation loop with a very low bandwidth of  
approximately 1 kHz. The TZA3054A can support transmission standards allowing  
extremely long sequences of consecutive identical bits by disabling the DC offset  
cancellation, but at the expense of reduced sensitivity. The DC offset cancellation can be  
disabled with I2C-bus bit OFFSET in I2C-bus register LIMCNF (12H). This also allows for  
burst mode applications.  
As part of the ACE functionality, the TZA3054A has an automatic bandwidth adjustment  
loop to achieve optimum performance over temperature at all bit rates. This means that  
the input bandwidth is reduced automatically at lower bit rates. Wide band noise of the  
optical front-end (photo detector and transimpedance amplifier) is thus reduced for lower  
bit rates.  
The automatic bandwidth adjustment of the input stage can be overruled by manual  
settings via the I2C-bus. This may be needed in the event of non-randomized or  
burst-mode signals; see Section 8.6.  
8.2 Logarithmic level detect  
The signal strength at the input is measured with a Logarithmic Level Detector (LLD) and  
presented at pin LLD. The LLD reading has a sensitivity (SLLD) of typically 17 mV/dB for a  
Vi(p-p)(SE) range of 1 mV to 1200 mV, which is available as a voltage on pin LLD, or can be  
retrieved from the I2C-bus register 0Ah in binary form.  
VIN(p p)  
VLLD = VLLD = VLLD(10 mV) + SLLD × 20LOG  
, (expressed in mV).  
-----------------------  
10 mV  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
6 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
1220  
LLD  
V
(mV)  
880  
540  
200  
S
LLD  
1
10  
100  
1000  
V
(mV)  
IN(p-p)  
001aab367  
Fig 5. LLD voltage as a function of the RF input voltage.  
8.3 Loss of signal indicator  
Besides the analog LLD output, a digital LOS indication circuit is also incorporated in the  
TZA3054A. The LLD level is internally compared with a loss of signal threshold, which can  
be set via an external resistor connected to pin LOSTH (this is the default mode after  
power-up) or by means of an internal Digital-to-Analog Converter (DAC). If the DAC is  
used, programmed with I2C-bus bit I2CLOSTH in I2C-bus register LOSCNF (10h), the  
value of the required threshold needs to be programmed into the I2C-bus register LOSTH  
(11h). The default value is 00h, so no LOS can be generated.  
If the received signal strength is below the threshold value the LOS open-drain output will  
be pulled LOW. The LOS open-drain output requires an external pull-up resistor in the  
range of 4.7 kto 10 k. A default hysteresis of 3 dB is applied in the comparator.  
I2C-bus register LOSCNF (10h) provides more flexibility, e.g. a programmable hysteresis  
of 0 dB to 7 dB in steps of 1 dB, a CMOS style LOS output instead of the default  
open-drain configuration and programmable LOS polarity. These features provide  
“any-interface” in the application; see Figure 6.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
7 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
V
CCO  
CONTROL  
LOGIC  
AND  
LEVEL  
SHIFT  
ESD  
CLAMP  
LOS  
LOS  
GND  
polarity  
001aab368  
CMOS/  
open-drain  
Fig 6. LOS output configuration.  
8.4 Setting LOSTH reference level by external resistor  
V
CCO  
LLD  
1.23 V  
LOS  
V
ref  
LOS compare  
RREF  
LOSTH  
R1  
10 kΩ  
I
R2  
GND  
001aab369  
R2 R1  
Fig 7. Setting the LOSTH reference level by external resistors.  
The loss of signal threshold can also be programmed by applying an external voltage to  
pin LOSTH (this is the default mode after power-up). The reference voltage level at pin  
LOSTH can be set by connecting an external resistor (R2) from the pin to ground. The  
voltage on the pin is determined by the resistor ratio between R2 and R1; see Figure 7.  
For resistor R1 the value must be 10 k, with 1 % accuracy, thus yielding a current of  
R2  
123 µA. The LOSTH voltage equals  
× V  
.
ref  
------  
R1  
Voltage Vref represents a temperature stabilized and accurate reference voltage of 1.23 V.  
The minimum threshold level corresponds to 0 V and the maximum to 1.23 V. Hence, the  
value of R2 may not be higher than R1. The accuracy of the LOSTH voltage depends  
mainly on the matching of the two external resistors.  
Apart from using resistors (R1 and R2) to set the LOS threshold an accurate external  
voltage source can also be used, provided that it has a low output impedance.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
8 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
The omission of R2 results in maximum LOS threshold, thereby generating LOS  
constantly. LOSTH may be short-circuited to ground to circumvent this situation. If the  
I2C-bus DAC is used, R2 may be omitted or connected to ground.  
1000  
V
IN(p-p)  
100  
LOS  
10  
1
200  
540  
880  
1220  
V
(mV)  
LOSTH  
001aab370  
Fig 8. RF input voltage as a function of the LOSTH voltage.  
8.5 RF output  
TZA3054A  
V
CCO  
75 Ω  
75 Ω  
OUT  
50 Ω  
50 Ω  
OUTQ  
I
swing  
001aab371  
Fig 9. RF output configuration.  
The RF CML output has a programmable signal amplitude between 500 mV to  
2000 mV (p-p) (differential) in 7 steps of 250 mV, by I2C-bus bits RFLVL[2:0] (I2C-bus  
register RFLVL; 13h). The output can also be switched off using this RFLVL register: this  
might be useful to save power in case only the LLD and LOS functions of the TZA3054A  
are used in the application. The default amplitude is 1500 mV (p-p, differential).  
Furthermore, the termination scheme can be either DC or AC-coupled.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
9 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
If the I2C-bus setting for the output level is set to pin selection, the signal amplitude of the  
output buffer can be selected from two fixed values. By applying a HIGH level to pin LVL  
1570 mV (p-p, differential) is selected (this is the default mode after power-up due to the  
internal pull-up resistor). By applying a LOW level to pin LVL 500 mV (p-p, differential) is  
selected.  
As part of the ACE functionality, the slew rate of the output is adjusted automatically for  
any bit rate to approximately 10 % of the corresponding Unit Interval time, by a built-in  
slew rate control loop. The slew rate control loop eases ElectroMagnetic Compatibility  
(EMC) and ElectroMagnetic Interference (EMI) compliance of the final module design, as  
well as dramatic power saving, especially for lower bit rates. To estimate the power  
dissipation use Figure 17 Core supply current as a function of bit rate, and Figure 18 RF  
output supply current as a function of output voltage swing. By adding both independent  
currents the total supply current can be calculated.  
The automatic slew rate adjustment can be overruled by manual setting of the output  
stage via the I2C-bus. This may be required in the event of non-randomized or burst-mode  
signals; see the Section 8.6.  
8.5.1 JAM  
The RF output can be forced into the logic 0 state by applying a LOW-level to the JAM pin  
(pin JAM is active LOW). Hence in the event of a loss of signal situation, the output can be  
jammed to suppress the amplified noise from the optical front-end. The JAM pin has an  
internal pull-up, to prevent jamming of the output if the JAM pin is not connected.  
If CMOS compatibility is required, pin JAM can be programmed to be active HIGH with  
I2C-bus bit JAMPOL (I2C-bus register RFLVL; 13h).  
Jamming can also be done via the I2C-bus, using I2C-bus bit I2CJAM to enable this  
function and I2C-bus bit JAM to actually jam the output (I2C-bus register RFLVL; 13h).  
JAM can also be programmed to work automatically when loss of signal occurs. This can  
be done by connection pin LOS to pin JAM directly or with I2C-bus bit AUTOJAM (I2C-bus  
register RFLVL; 13h).  
V
CCO  
CMOS  
input  
SECONDARY  
ESD CLAMP  
ESD CLAMP  
GND  
001aab372  
Fig 10. CMOS input configuration.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
10 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
8.5.2 Diagnostic support  
The TZA3054A supports several diagnostic functions, including:  
Junction temperature  
Supply voltage  
Input signal strength (LLD)  
External voltage (EXT input).  
The junction temperature, supply voltage, LLD voltage and an external voltage (EXT  
input) can be measured with a built-in 8-bit ADC, based on the successive approximation  
principle. The value of the measured quantity can then be read in the appropriate ADC  
result register. A supervisory algorithm can be implemented in a microcontroller, to realize  
the required diagnostic functionality e.g. the i-SFP standard, SFF-8472.  
8.5.2.1 Junction temperature  
The junction temperature can be measured in a range of 40 °C to +85 °C with  
approximately 3 °C resolution. The result can be read from ADC register 08h. The  
following formula can be applied to convert the ADC reading into a temperature:  
T = 478.43 2.93 × ADCvalue  
.
8.5.2.2 Supply voltage  
The supply voltage can be measured in a range of 2.4 V to 3.7 V with approximately 5 mV  
resolution. The result can be read from ADC register 09h. The formula to convert the ADC  
reading into the supply voltage is: VCC = 2.4 + 4.82 × 103 × ADCvalue  
.
8.5.2.3 LLD voltage  
The LLD voltage can be measured from 0 mV to 1200 mV with approximately 5 mV  
resolution. The result can be read from ADC register 0Ah. The formula to convert the ADC  
reading into the supply voltage is: VLLD = 4.82 × 103 × ADCvalue. The LLD voltage can be  
converted to an input voltage by using Figure 5.  
8.5.2.4 External voltage  
The external input voltage (EXT) can be measured between 0 V and 3.6 V with  
approximately 15 mV resolution. The result can be read from ADC register 0Bh. The  
formula to convert the ADC reading into the supply voltage is:  
VEXT = 14.45 × 103 × ADCvalue  
.
8.5.3 Power supply connections  
Two separate supply domains (VCCI and VCCO) provide isolation between the various  
functional blocks of the TZA3054A. Each supply domain should be connected to a  
common VCC via a separate filter. All supply and ground pins, including the exposed  
die pad, must be connected. The die pad should be connected with the lowest  
inductance possible. Since the die pad is also used as the main ground return of the chip,  
the connection should also have a low DC impedance. The voltage supply levels should  
be in accordance with the values specified in Section 11.  
All external components should be surface mounted devices, preferably of size 0603 or  
smaller. The components must be mounted as close to the IC as possible, especially  
supply decoupling capacitors.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
11 of 32  
TZA3054A  
Philips Semiconductors  
8.5.4 Power-up  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
At power-up an internal safe condition signal is generated once the VCC voltage is  
sufficiently high for proper operation and the internal reference voltage has settled. This  
signal is used to generate a Power-On-Reset (POR) signal that resets all internal circuits  
to their default value.  
8.5.5 Default at power-up  
All I2C-bus registers are reset to their default setting at power-up, which are:  
DC offset compensation: on  
Automatic bandwidth adjustment (ACE on)  
Automatic slew rate adjustment (ACE on)  
Pin adjustable / selectable LOSTH, JAM and LVL  
LOS hysteresis 3 dB  
LOS output open drain (active LOW)  
JAM active LOW.  
8.5.6 Interrupt controller  
The TZA3054A features an interrupt controller, based on status flags. These flags are:  
Loss of signal  
Temperature alarm (> 125 °C with a hysteresis of approximately 4 °C)  
Supply voltage alarm (< 2.85 V with a hysteresis of approximately 50 mV).  
The controller contains two I2C-bus registers, namely the I2C-bus interrupt register  
(INTERRUPT at address 00h) and the I2C-bus status register (STATUS at address 01h).  
The I2C-bus interrupt register stores the history, while the I2C-bus status register always  
shows the present state of the receiver.  
The I2C-bus interrupt and status registers can be polled by an I2C-bus read action. The  
read action of the I2C-bus interrupt register clears all interrupt flags. If the alarm condition  
is still present, the flag is immediately reset in the I2C-bus interrupt register. The I2C-bus  
status register is not reset since it always shows the present state of the TZA3054A.  
8.5.7 I2C-bus  
The chip can be configured by using the I2C-bus connections SDA and SCL.  
The I2C-bus address of the TZA3054A is D2h for writing and D3h for reading.  
A detailed list of all I2C-bus registers and an explanation of their contents is given in  
Section 8.7.  
During power-up, all I2C-bus registers are reset to their default value as indicated in  
Table 3.  
Table 3:  
I2C-bus address of TZA3054A  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
1
1
0
1
0
0
1
X
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
12 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
8.6 Manual settings  
In the default operating mode of the TZA3054A ACE is switched on. This means that the  
input bandwidth and output slew rate are adjusted automatically using the built-in  
performance monitors. This allows for an optimum performance over the temperature  
range at all bit rates in combination with very low power consumption.  
As well as the fully automatic mode, two other modes are available:  
Semi-automatic mode: manual selection of bit rate range with automatic bandwidth  
and slew rate adjustment within this range  
Full manual mode: manual selection of bandwidth and slew rate values.  
Control is done via two I2C-bus registers: BW (15h) for the input stage and SLEW (14h)  
for the output stage. Each register contains two control parameters: performance monitor  
control (BW[4:0] and SLEW[4:0] respectively) and the octave selection (BWOCT[2:0] and  
SLEWOCT[2:0] respectively).  
An overview of the possible modes and the I2C-bus control values is given in Table 4. The  
typical behavior of the rise and fall time in the different modes is illustrated in Figure 13. A  
similar picture can be made for the input bandwidth.  
Table 4:  
Mode  
The possible modes and the I2C-bus control values  
SLEW[4:0] =  
SLEW[4:0] =  
BW[4:0] = variable  
BW[4:0] = 00000  
SLEWOCT[2:0] = BWOCT[2:0] = 111  
fully automatic  
semi-automatic  
not applicable  
manual mode  
SLEWOCT[2:0] = BWOCT[2:0] = variable  
8.6.1 Fully automatic mode: automatic bandwidth and slew rate adjustment over  
all bit rates  
In the default and fully automatic mode SLEWOCT[2:0] and BWOCT[2:0] are equal to  
111, which means that ACE is switched on.  
By default, the performance monitor control values BW[4:0] and SLEW[4:0] are set to  
01011. This leads to a bandwidth that is equal to approximately 70 % of the input data  
rate, and the slew rate is adjusted so that the rise and fall times are equal to approximately  
0.1 UI.  
This mode gives a good trade off between performance and power consumption and is  
the recommended setting.  
Optimization of the relative bandwidth and relative slew rate is possible by changing the  
BW[4:0] and OCT[4:0] values.  
A low value for the bits BW[4:0] means that the bandwidth is maximized but still adjusted  
according to the incoming bit rate. Increasing the value means that the bandwidth will be  
smaller. This allows for optimization of the input stage with respect to the used optical  
receiver, i.e. (A)PD + TIA; see Figure 11.  
A similar approach is possible with the bits SLEW[4:0]. A low value give fast edges on the  
output stage while increasing the value minimizes the slew rate. This allows for  
optimization of the output stage with respect to EMI/EMC and power consumption; see  
Figure 12.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
13 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
G
BW = 11111  
BW = 00001  
f
B
i
001aab376  
Fig 11. Adapting the bandwidth control.  
001aab377  
4
10  
t , t  
r
f
(ps)  
3
2
10  
(1)  
(2)  
10  
10  
2
3
4
10  
10  
10  
10  
bit rate (Mbit/s)  
(1) Slew = 00001.  
(2) Slew = 11111.  
The values are not based on measurements.  
Fig 12. Adapting the slew rate control.  
8.6.2 Semi-automatic mode: manual selection of bit rate range with automatic  
bandwidth and slew rate adjustment within this range  
In this mode, the range of bit rates where the automatic selection of bandwidth and slew  
rate is operating is limited. However, within this range of bit rates, the optimum bandwidth  
and slew rate are automatically chosen.  
This mode can be achieved by setting the SLEWOCT[2:0] and BWOCT[2:0] bits to the  
required range of bit rates. The ACE functionality is operating but limited to this range of  
bit rates.  
Again, with the bits SLEW[4:0] and BW[4:0] further optimization of the relative bandwidth  
and relative slew rate is possible.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
14 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
t , t  
r
t , t  
r f  
f
fully  
automatic  
mode  
competitor  
behavior  
Mbit/s (MHz)  
Mbit/s (MHz)  
t , t  
r
semi  
automatic  
mode  
t , t  
r f  
manual  
mode  
f
Mbit/s (MHz)  
Mbit/s (MHz)  
001aab378  
Fig 13. Graphic overview of all modes for rise and fall time adjustment.  
8.6.3 Full manual mode: manual selection of bandwidth and slew rate  
By setting both BW[4:0] and SLEW[4:0] to 00000, the automatic bandwidth and the slew  
rate adjustment of the TZA3054A are completely switched off and the values for the  
bandwidth and slew rate can be controlled manually.  
The bandwidth of the input stage and the slew rate of the output stage can be controlled  
with the bits BWOCT[2:0] in I2C-bus register BW (15h) and the bits SLEWOCT[2:0] in  
I2C-bus register SLEW (14h) respectively. By using the values given in Table 14 and  
Table 15 the right settings can be chosen.  
In this mode the user gets 6 different limiting amplifiers, all optimized for their respective  
bandwidth range. The bandwidth spans from 1 kHz to the highest frequency of the chosen  
octave.  
In the event that the DC cancellation loop is disabled as well, the lowest frequency is  
determined by the input coupling capacitor in combination with the input impedance. This  
enable burst mode operation.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
15 of 32  
TZA3054A  
Philips Semiconductors  
8.7 I2C-bus  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
General characteristics of the I2C-bus can be found in “The I2C-bus specification”, version  
2.1, January 2000, available at “http://www.semiconductors.philips.com/buses/”.  
Table 5:  
I2C-bus address (D2h)  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
R/W  
1
1
0
1
0
0
1
X
The TZA3054A contains both read only registers and read / write registers; see Table 6.  
Table 6:  
Address  
00h  
Address of all registers  
Name  
Function  
R/W  
R
Default  
00h  
INTERRUPT  
STATUS  
ADC_TJ  
interrupt register  
status register  
01h  
R
00h  
08h  
junction temperature ADC  
result register  
R
00h  
09h  
0Ah  
0Bh  
ADC_VCC  
ADC_LLD  
ADC_EXT  
supply voltage ADC result  
register  
R
R
00h  
00h  
00h  
logarithmic level detect  
ADC result register  
external voltage ADC result R  
register  
0Ch  
10h  
ADC_LOSTH  
LOSCNF  
los threshold result register R  
00h  
23h  
loss of signal detector  
configuration register  
R/W  
11h  
12h  
13h  
14h  
15h  
LOSTH  
LIMCNF  
RFLVL  
SLEW  
BW  
loss of signal threshold  
register  
R/W  
R/W  
R/W  
00h  
B6h  
15h  
08h  
08h  
limiter configuration  
register  
RF output configuration  
register  
RF output slew rate control R/W  
register  
RF bandwidth control  
register  
R/W  
8.7.1 Write protocol  
During a write action, the I2C-bus controller in the TZA3054A allows one or more registers  
to be written to. Specifying the register address before writing the data is mandatory for  
each register; see Figure 14.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
16 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
R/W  
0 A  
S
slave address  
register address  
A
data  
A
P
n bytes  
001aab379  
Fig 14. Write protocol.  
8.7.2 Read protocol  
During a read action, the I2C-bus controller in the TZA3054A automatically increments the  
address pointer (auto-increment), allowing sequential registers to be read in a quick  
fashion; see Figure 15. Auto-increment reading is not possible when reading the ADC  
registers (08h, 09h, 0Ah, 0Bh and 0Ch); see Figure 16.  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
R/W  
R/W  
1 A  
S
slave address  
0 A  
register address  
A
RS  
slave address  
acknowledge  
from master  
not acknowledge  
from master  
data  
A
data  
A
P
bytes 1 to (n1)  
byte n  
001aab380  
Fig 15. Auto-increment reading.  
start of reading  
1st ADC register  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
R/W  
R/W  
S
slave address  
0 A  
register address  
A
RS  
slave address  
1 A  
data  
A
P
start of reading  
2nd ADC register  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
not acknowledge  
from master  
R/W  
R/W  
1 A  
S
slave address  
0 A  
register address  
A
RS  
slave address  
data  
A
P
001aab381  
Fig 16. Example of reading two ADC registers.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
17 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
Table 7:  
Bit  
INTERRUPT - I2C-bus register (address 00h) bit description  
Symbol  
Description  
7 to 3  
2
-
reserved  
LOS  
Loss Of Signal  
1 = no signal present (loss of signal condition)  
0 = signal present (default value)  
1
0
VCCALARM supply voltage alarm  
1 = supply voltage < 3.0 V  
0 = supply voltage 3.0 V (default value)  
temperature alarm  
TALARM  
1 = junction temperature 125 °C  
0 = junction temperature < 125 °C (default value)  
Table 8:  
Bit  
STATUS - I2C-bus register (address 01h) bit description  
Symbol  
Description  
7 to 3  
2
-
reserved  
LOS  
Loss Of Signal  
1 = no signal present (loss of signal condition)  
0 = signal present (default value)  
1
VCCALARM supply voltage alarm  
1 = supply voltage < 3.0 V  
0 = supply voltage 3.0 V (default value)  
temperature alarm  
0
TALARM  
Table 9:  
Bit  
ADC - I2C-bus register (address 08h. 09h, 0Ah, 0Bh and 0Ch) bit description  
Symbol  
Description  
7 to 0  
ADC[7:0]  
analog-to-digital conversion result[1]  
1 = maximum value  
0 = minimum value (default value)  
[1] For corresponding values, see Section 8.5.2.  
Table 10: LOSCNF - I2C-bus register (address 10h; default value = 23h) bit description  
Bit  
7
Symbol  
Description  
-
reserved  
6
LOSIOTYPE loss of signal output polarity  
1 = CMOS  
0 = open-drain (default value)  
5
4
LOSPOL  
loss of signal output polarity  
1 = inverted (active LOW) (default value)  
0 = CMOS (active HIGH)  
reserved  
-
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
18 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
Table 10: LOSCNF - I2C-bus register (address 10h; default value = 23h) bit description  
Bit  
Symbol  
I2CLOSTH loss of signal detection  
1 = loss of signal detection set by I2C-bus  
Description  
3
0 = loss of signal detection set by pin LOSTH (default value)  
2 to 0  
HYST[2:0]  
loss of signal detection hysteresis (default value = 011)  
000 = 0 dB  
001 = 1 dB  
010 = 2 dB  
011 = 3 dB  
100 = 4 dB  
101 = 5 dB  
110 = 6 dB  
111 = 7 dB  
Table 11: LOSTH - I2C-bus register (address 11h; default value = 00h) bit description  
Bit  
Symbol  
LOSTH[7:0] loss of signal detection threshold  
1 = maximum LOS threshold, 1228 mV (p-p)  
0 = minimum LOS threshold, 0 mV (p-p) (default value)  
Description  
7 to 0  
Table 12: LIMCNF - I2C-bus register (address 12h; default value = B6h) bit description  
Bit  
7 to 2  
1
Symbol  
-
Description  
reserved  
OFFSET  
offset control  
1 = offset control on (default value)  
0 = offset control off  
limiter polarity  
0
POLINV  
1 = inverting  
0 = normal (default value)  
Table 13: RFLVL - I2C-bus register (address: 13h; default value = 15h) bit description  
Bit  
Symbol  
Description  
7
JAMI2C  
jam function enabling[1]  
1 = JAM function enabled by I2C-bus  
0 = JAM function enabled by pin JAM (default value)  
RF output jamming  
6
5
JAM  
1 = output jammed with logic 0 on output  
0 = output not jammed (default value)  
jam setting  
AUTOJAM  
1 = automatic jamming in the event of LOS  
0 = no automatic jamming (default value)  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
19 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
Table 13: RFLVL - I2C-bus register (address: 13h; default value = 15h) bit description  
Bit  
Symbol  
Description  
4
JAMPOL  
jam input polarity  
1 = inverted (active LOW) (default value)  
0 = normal (active HIGH; CMOS)  
RF output signal level setting  
1 = I2C-bus setting enabled  
0 = pin LVL setting enabled (default value)  
3
I2CRFLVL  
2 to 0  
RFLVL[2:0] RF output signal level (default value = 101)  
000 = RF output off, no dissipation in output stage  
001 = minimum RF output level, 500 mV (p-p) (differential)  
111 = maximum RF output level, 2000 mV (p-p) (differential)  
[1] Step size 250 mV (p-p) (differential).  
Table 14: SLEW - I2C-bus register (address: 14h; default value = E8h) bit description  
Bit  
Symbol  
Description  
7 to 5  
SLEWOCT[7:5] RF output slew rate octave selection  
000 = 3200 to 1800 Mbit/s  
001 = 1800 to 900 Mbit/s  
010 = 900 to 450 Mbit/s  
011 = 450 to 225 Mbit/s  
100 = 225 to 112 Mbit/s  
101 = 112 to 56 Mbit/s  
110 = reserved  
111 = fully automatic (default value)  
4 to 0  
SLEW[4:0]  
RF output slew control (default value = 01011)  
00000 = automatic slew control off (selection with SLEWOCT)  
00001 = maximum slew rate (fastest edges)  
11111 = minimum slew rate (slowest edges)  
Table 15: BW - I2C-bus register (address: 15h; default value = E8h) bit description  
Bit  
Symbol  
Description  
7 to 5  
BWOCT[7:5] limiting amplifier bandwidth octave selection  
000 = 3200 to 1800 Mbit/s  
001 = 1800 to 900 Mbit/s  
010 = 900 to 450 Mbit/s  
011 = 450 to 225 Mbit/s  
100 = 225 to 112 Mbit/s  
101 = 112 to 56 Mbit/s  
110 = reserved  
111 = fully automatic (default value)  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
20 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
Table 15: BW - I2C-bus register (address: 15h; default value = E8h) bit description  
Bit  
Symbol  
Description  
4 to 0  
BW[4:0]  
limiting amplifier bandwidth control (default value = 01011)  
00000 = automatic bandwidth control off (selection with BWOCT)  
00001 = highest bandwidth  
11111 = lowest bandwidth  
9. Limiting values  
Table 16: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).; All voltages are referenced to ground; positive  
currents flow into the IC.  
Symbol  
VCC  
Vn  
Parameter  
Conditions  
Min  
0.3  
0.3  
1.0  
40  
-
Max  
Unit  
V
supply voltage  
+3.5  
voltage on all input and output pins  
input current on pin  
ambient temperature  
junction temperature  
storage temperature  
VCC + 0.3  
+1.0  
V
In  
mA  
°C  
°C  
°C  
Tamb  
Tj  
+85  
110  
Tstg  
65  
+125  
10. Thermal characteristics  
Table 17: Thermal characteristics  
In compliance with JEDEC standards JESD51-5 and JESD51-7.  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
K/W  
Rth(j-a)  
thermal resistance from junction to in free air  
ambient  
53  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
21 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
11. Characteristics  
Table 18: Characteristics  
Tamb = 40 °C to +85 °C; VCC = 2.9 V to 3.5 V; positive currents flow into the IC; all voltages are referenced to ground; all  
values apply to default configuration; ACE on, 2.5 Gbit/s; Vo = 1500 mV (p-p) (diff); LOS and LLD active; no jam; RF input  
values are listed as single-ended; RF output values are listed differential; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply: pins VCCI and VCCO  
VCC  
supply voltage  
2.9  
3.3  
3.5  
V
ICC(core)  
core supply current  
see Figure 17  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
OC48/STM-16; ACE on  
OC48/STM-16; ACE off  
GE; ACE off  
10  
9
20  
17  
12  
9
26  
21  
15  
10  
90  
74  
54  
38  
mA  
mA  
mA  
mA  
mW  
mW  
mW  
mW  
5
OC3/STM-1; ACE off  
OC48/STM-16, ACE on  
OC48/STM-16, ACE off  
GE, ACE off  
5
Pcore  
core power  
dissipation  
35  
33  
20  
19  
67  
57  
41  
30  
OC3/STM-1, ACE off  
see Figure 17 and Figure 18  
OC48/STM-16, ACE on  
OC48/STM-16, ACE off  
GE, ACE off  
Ptot  
total power  
dissipation  
[1] [2] [3]  
[1] [2] [3]  
[1] [2] [3]  
[1] [2] [3]  
110  
108  
85  
146  
135  
119  
108  
180  
170  
145  
130  
mW  
mW  
mW  
mW  
OC3/STM-1, ACE off  
75  
RF input: pins IN and INQ  
Vi(p-p)  
input voltage swing  
(peak-to-peak value)  
limiting output  
differential  
2.5  
-
-
1200  
-
mV  
V
[4]  
[4]  
Vi(CM)  
input common mode  
voltage  
1.6  
Zi  
input impedance  
80  
-
100  
1
120  
-
f3dB  
offset compensation  
low 3 dB cut-off  
frequency  
kHz  
DR  
data rate  
100  
-
3200  
Mbit/s  
RF output; pins OUT and OUTQ  
Vo(p-p)  
output voltage range RL(ext) = 50 (per pin)  
(peak-to-peak value)  
400  
-
2300  
1685  
mV  
mV  
default output voltage RL(ext) = 50 (per pin)  
1440  
1570  
(peak-to-peak value)  
Zo  
output impedance  
rise time  
single-ended to VCC  
60  
-
75  
40  
0.1  
9
90  
-
tr  
20 % to 80 %; ACE OFF  
80 % to 20 %; ACE ON  
ps  
UI  
ps  
tf  
fall time  
-
-
DJ(p-p)  
deterministic output  
jitter  
RL = 50 ; Vi = 100 mV;  
OC-48; K28.5 pattern  
-
-
(peak-to-peak value)  
RJ(rms)  
random output jitter  
(RMS value)  
RL = 50 ; Vi = 10 mV  
-
2
-
ps  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
22 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
Table 18: Characteristics …continued  
Tamb = 40 °C to +85 °C; VCC = 2.9 V to 3.5 V; positive currents flow into the IC; all voltages are referenced to ground; all  
values apply to default configuration; ACE on, 2.5 Gbit/s; Vo = 1500 mV (p-p) (diff); LOS and LLD active; no jam; RF input  
values are listed as single-ended; RF output values are listed differential; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Logarithmic level detect (LLD)  
Vi(p-p)  
SLLD  
VLLD  
input voltage swing  
(peak-to-peak value)  
1
-
1200  
20  
mV  
LLD sensitivity  
valid for input voltage above  
Vi = 10 mV (p-p) (SE)  
14  
460  
17  
540  
mV/dB  
mV  
LLD output voltage  
Vi = 10 mV (p-p) (SE)  
640  
Analog output; pin LLD  
[4]  
Zo  
output impedance  
-
-
-
2
-
10  
1  
1
IO(source)  
IO(sink)  
LOS detector  
output source current  
mA  
mA  
output sink current  
-
hys  
hysteresis  
default value  
-
3
-
-
dB  
dB  
µs  
µs  
hysteresis range  
assert time  
0
-
7
5
5
ta  
td  
Vi(p-p) = 3 dB  
Vi(p-p) = 3 dB  
-
de-assert time  
-
-
Open-drain output; pin LOS (default)  
VOL  
LOW-level output  
voltage  
IOL = 1 mA  
0
-
-
-
0.2  
10  
V
IOH  
HIGH-level output  
current  
VOH = VCC  
µA  
CMOS output; pin LOS (re-configured)  
VOL  
LOW-level output  
voltage  
IOL = 1 mA  
0
-
-
0.2  
V
V
VOH  
HIGH-level output  
voltage  
IOH = 1 mA  
V
CC 0.2  
VCC  
CMOS input; pin JAM and LVL  
VIL  
VIH  
IIL  
LOW-level input  
voltage  
0
-
-
-
-
0.33VCC  
V
HIGH-level input  
voltage  
0.7VCC  
200  
-
VCC  
-
V
LOW-level input  
current  
VIL = 0 V  
VIH = VCC  
µA  
µA  
IIH  
HIGH-level input  
current  
10  
Analog input; pin EXT  
VI  
Ii  
input voltage  
input current  
0
-
-
3.5  
10  
-
V
[4]  
[4]  
-
µA  
MΩ  
Zi  
input impedance  
-
1
Reference; pin RREF  
Vref  
reference voltage  
10 kresistor to GND  
1.17  
1.23  
1.28  
V
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
23 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
Table 18: Characteristics …continued  
Tamb = 40 °C to +85 °C; VCC = 2.9 V to 3.5 V; positive currents flow into the IC; all voltages are referenced to ground; all  
values apply to default configuration; ACE on, 2.5 Gbit/s; Vo = 1500 mV (p-p) (diff); LOS and LLD active; no jam; RF input  
values are listed as single-ended; RF output values are listed differential; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
I2C-bus pins; SCL and SDA  
VIL  
LOW-level input  
voltage  
0
-
-
-
-
0.33VCC  
V
V
V
V
VIH  
Vhys  
VOL  
HIGH-level input  
voltage  
0.7VCC  
0.05VCC  
0
VCC  
-
hysteresis of Schmitt  
trigger inputs  
SDA LOW-level  
output voltage  
(open-drain)  
IOL = 3 mA  
0.4  
IL  
leakage current  
-
-
-
-
-
µA  
µA  
IIL  
LOW-level input  
current  
200  
IIH  
HIGH-level input  
current  
-
-
-
-
10  
10  
µA  
Ci  
input capacitance  
pF  
I2C-bus timing  
fSCL  
SCL clock frequency  
-
-
-
-
100  
kHz  
µs  
tLOW  
SCL LOW time  
1.3  
0.6  
-
-
tHD;STA  
hold time START  
condition  
µs  
tHIGH  
SCL HIGH time  
0.6  
0.6  
-
-
-
-
µs  
µs  
tSU;STA  
set-up time START  
condition  
tHD;DAT  
tSU;DAT  
tSU;STO  
data hold time  
0
-
-
-
0.9  
µs  
ns  
µs  
data set-up time  
100  
0.6  
-
-
set-up time STOP  
condition  
tr  
SCL and SDA rise  
time  
20  
-
300  
ns  
tf  
SCL and SDA fall time  
20  
-
-
300  
-
ns  
tBUF  
bus free time between  
STOP and START  
1.3  
µs  
Cb  
capacitive load for  
each bus line  
-
-
-
-
-
400  
pF  
ns  
V
tSP  
VnL  
VnH  
pulse width of  
allowable spikes  
0
50  
-
noise margin at  
LOW-level  
0.1VCC  
0.2VCC  
noise margin at  
HIGH-level  
-
V
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
24 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
[1] Clarification of used abbreviations:  
a) OC3 and OC48 are SONET based standards, 155.52 Mbit/s and 2488.32 Mbit/s respectively.  
b) STM-1 and STM-16 are SDH based standards, 155.52 Mbit/s and 2488.32 Mbit/s respectively.  
c) GE is Gigabit Ethernet, 1250 Mbit/s.  
[2] Adding both independent currents of Figure 17 and Figure 18 yields the total ICC  
.
[3] Power listed is the power dissipated by the TZA3054A, excluding the power dissipated in the 50 load.  
[4] Guaranteed by design.  
001aab374  
001aab375  
21  
40  
I
I
CC  
(mA)  
CC(core)  
(mA)  
17  
13  
9
30  
(1)  
20  
10  
0
(2)  
5
2
3
4
10  
10  
10  
10  
bit rate (Mbit/s)  
0
500  
1000  
1500  
2000  
(mV)  
V
o
(1) ACE on.  
(2) ACE off.  
Fig 17. Core supply current as a function of bit rate.  
Fig 18. RF output supply current as a function of  
output voltage swing.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
25 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
12. Package outline  
HVQFN20: plastic thermal enhanced very thin quad flat package; no leads;  
20 terminals; body 4 x 3 x 0.85 mm  
SOT797-1  
D
B
A
E
terminal 1  
index area  
A
A
1
c
detail X  
C
e
1
y
y
v
M
M
C
C
A B  
C
1
e
b
w
1/2 e  
5
10  
L
4
1
11  
e
e
E
h
2
1/2 e  
14  
terminal 1  
index area  
20  
15  
X
D
h
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
A
b
c
D
D
E
E
h
e
e
e
L
v
w
y
y
1
1
2
1
h
max.  
0.05 0.30  
0.00 0.18  
4.1  
3.9  
2.75  
2.45  
3.1  
2.9  
1.75  
1.45  
0.5  
0.3  
mm  
1
0.2  
0.5  
2.5  
1.5  
0.1  
0.05 0.05  
0.1  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
03-03-19  
SOT797-1  
- - -  
- - -  
- - -  
Fig 19. Package outline.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
26 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
13. Soldering  
13.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
13.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
13.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
27 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
13.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
13.5 Package related soldering information  
Table 19: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
28 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
29 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
14. Revision history  
Table 20: Revision history  
Document ID  
Release date Data sheet status  
20040812 Product data sheet  
Change notice Order number  
9397 750 13466  
Supersedes  
TZA3054A_1  
-
-
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
30 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
15. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
Right to make changes — Philips Semiconductors reserves the right to  
16. Definitions  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
18. Licenses  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
Purchase of Philips I2C-bus components  
Purchase of Philips I2C-bus components conveys a  
license under the Philips’ I2C-bus patent to use the  
components in the I2C-bus system provided the system  
conforms to the I2C-bus specification defined by  
Koninklijke Philips Electronics N.V. This specification  
can be ordered using the code 9398 393 40011.  
17. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
19. Trademarks  
A-rate — is a trademark of Koninklijke Philips Electronics N.V.  
20. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 13466  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 12 August 2004  
31 of 32  
TZA3054A  
Philips Semiconductors  
100 Mbit/s to 3.2 Gbit/s A-rate limiting amplifier  
21. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 4  
13.3  
13.4  
13.5  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 27  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 28  
Package related soldering information. . . . . . 28  
14  
15  
16  
17  
18  
19  
20  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 30  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 31  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Licenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Contact information . . . . . . . . . . . . . . . . . . . . 31  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8
Functional description . . . . . . . . . . . . . . . . . . . 6  
RF input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Logarithmic level detect . . . . . . . . . . . . . . . . . . 6  
Loss of signal indicator . . . . . . . . . . . . . . . . . . . 7  
Setting LOSTH reference level by external  
8.1  
8.2  
8.3  
8.4  
resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
RF output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
JAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Diagnostic support . . . . . . . . . . . . . . . . . . . . . 11  
Junction temperature . . . . . . . . . . . . . . . . . . . 11  
Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . 11  
LLD voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
External voltage . . . . . . . . . . . . . . . . . . . . . . . 11  
Power supply connections . . . . . . . . . . . . . . . 11  
Power-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Default at power-up. . . . . . . . . . . . . . . . . . . . . 12  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . 12  
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Manual settings. . . . . . . . . . . . . . . . . . . . . . . . 13  
Fully automatic mode: automatic bandwidth  
8.5  
8.5.1  
8.5.2  
8.5.2.1  
8.5.2.2  
8.5.2.3  
8.5.2.4  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
8.6  
8.6.1  
and slew rate adjustment over all bit rates . . . 13  
Semi-automatic mode: manual selection of  
bit rate range with automatic bandwidth  
and slew rate adjustment within this range. . . 14  
Full manual mode: manual selection of  
8.6.2  
8.6.3  
bandwidth and slew rate. . . . . . . . . . . . . . . . . 15  
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write protocol . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Read protocol . . . . . . . . . . . . . . . . . . . . . . . . . 17  
8.7  
8.7.1  
8.7.2  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 21  
Thermal characteristics. . . . . . . . . . . . . . . . . . 21  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 22  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 26  
10  
11  
12  
13  
13.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 27  
13.2  
© Koninklijke Philips Electronics N.V. 2004  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 12 August 2004  
Document order number: 9397 750 13466  
Published in The Netherlands  
厂商 型号 描述 页数 下载

RHOMBUS-IND

TZA1-10 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-20 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-5 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA1-7 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-10 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-20 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-5 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

RHOMBUS-IND

TZA10-7 TZA / TYA系列5抽头高性能无源延时模块[ TZA / TYA Series 5-Tap High Performance Passive Delay Modules ] 1 页

NXP

TZA1000 QIC读写放大器[ QIC read-write amplifier ] 24 页

NXP

TZA1000T/N3 [ IC 1 CHANNEL READ WRITE AMPLIFIER CIRCUIT, PDSO24, 7.50 MM, PLASTIC, SOT-137-1, SOP-24, Drive Electronics ] 26 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.226338s