找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

5T2010BBGI

型号:

5T2010BBGI

品牌:

IDT[ INTEGRATED DEVICE TECHNOLOGY ]

页数:

24 页

PDF大小:

242 K

IDT5T2010  
2.5V ZERO DELAY PLL  
CLOCK DRIVER TERACLOCK™  
PRODUCT DISCONTINUATION NOTICE - LAST TIME BUY EXPIRES ON (OCTOBER 28, 2014)  
FEATURES:  
DESCRIPTION:  
The IDT5T2010 is a 2.5V PLL clock driver intended for high perfor-  
• 2.5VDD  
• 5 pairs of outputs  
mancecomputinganddata-communicationsapplications. TheIDT5T2010  
hastenoutputsinfivebanksoftwo, plusadedicateddifferentialfeedback.  
The redundant input capability allows for a smooth change over to a  
secondary clock source when the primary clock source is absent.  
The feedback bank allows divide-by-functionality from 1 to 12 through  
the use of the DS[1:0] inputs. This provides the user with frequency  
multiplication1to12withoutusingdividedoutputsforfeedback. Eachoutput  
bank also allows for a divide-by functionality of 2 or 4.  
The IDT5T2010 features a user-selectable, single-ended or differential  
inputtotensingle-endedoutputs. Theclockdriveralsoactsasatranslatorfrom  
a differential HSTL, eHSTL, 1.8V/2.5V LVTTL, LVEPECL, or single-ended  
1.8V/2.5V LVTTL input to HSTL, eHSTL, or 1.8V/2.5V LVTTL outputs.  
Selectableinterfaceiscontrolledby3-levelinputsignalsthatmaybehard-wired  
to appropriate high-mid-low levels. The outputs can be synchronously  
enabled/disabled.  
• Low skew: 50ps same pair, 100ps all outputs  
• Selectable positive or negative edge synchronization  
• Tolerant of spread spectrum input clock  
• Synchronous output enable  
• Selectable inputs  
• Input frequency: 4.17MHz to 250MHz  
• Output frequency: 12.5MHz to 250MHz  
• 1.8V / 2.5V LVTTL: up to 250MHz  
• HSTL / eHSTL: up to 250MHz  
• Hot insertable and over-voltage tolerant inputs  
• 3-level inputs for selectable interface  
• 3-level inputs for feedback divide selection with multiply ratios  
of(1-6, 8, 10, 12)  
• Selectable HSTL, eHSTL, 1.8V/2.5V LVTTL, or LVEPECL input  
interface  
• Selectable differential or single-ended inputs and ten single-  
ended outputs  
Furthermore,whenPEisheldhigh,alltheoutputsaresynchronizedwith  
thepositiveedgeoftheREFclockinput.WhenPEisheldlow,alltheoutputs  
are synchronized with the negative edge of REF.  
• PLL bypass for DC testing  
• External differential feedback, internal loop filter  
• Low Jitter: <75ps cycle-to-cycle  
• Power-down mode  
• Lock indicator  
• Available in BGA and VFQFPN packages  
Use replacement parts: 873995AYLF & 873996AYLF  
TxS  
FUNCTIONALBLOCKDIAGRAM  
1sOE  
1Q0  
OMODE  
Divide  
Select  
1Q1  
1F2:1  
2sOE  
2Q0  
PE  
PD  
FS LOCK  
Divide  
Select  
PLL_EN  
2Q1  
FB  
/N  
2F2:1  
3
3
FB/  
VREF2  
3sOE  
3Q0  
3Q1  
DS1:0  
Divide  
Select  
PLL  
0
1
REF0  
3F2:1  
REF0/  
VREF0  
4sOE  
5sOE  
0
1
4Q0  
4Q1  
Divide  
Select  
RxS  
REF1  
4F2:1  
REF1/  
VREF1  
REF_SEL  
Divide  
Select  
5Q0  
5Q1  
5F2:1  
QFB  
QFB  
Divide  
Select  
TheIDTlogoisaregisteredtrademarkofIntegratedDeviceTechnology,Inc.  
FBF2:1  
INDUSTRIAL TEMPERATURE RANGE  
AUGUST 2012  
1
c
2012 Integrated Device Technology, Inc.  
DSC 5981/29  
IDT5T2010  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
PINCONFIGURATION  
2
4
6
8
11  
1
9
3
5
7
10  
12  
1Q0  
2Q0  
VDD  
1F2  
1sOE  
1Q1  
GND  
GND  
2Q1  
2sOE  
2F2  
VDDQ  
A
B
A
B
VDD  
VDD  
GND  
3F2  
VDD  
NC  
1F1  
GND  
2F1  
NC  
VDDQ  
VDDQ  
VDDQ  
3sOE  
OMODE VDD  
VDD  
VDD  
NC  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDQ  
VDDQ  
NC  
C
D
E
F
C
D
E
F
REF_  
GND  
SEL  
VDD  
VDD  
VDD  
GND  
GND  
GND  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
3Q0  
3Q1  
REF1  
REF1  
3F1  
/VREF1  
REF0  
REF0  
VDD  
VDDQ  
VDDQ  
/VREF0  
FB  
FB  
GND  
VDDQ  
VDDQ  
VDDQ  
VDD  
VDD  
VDD  
VDD  
VDD  
NC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDQ  
4Q1  
G
H
G
H
/VREF2  
PLL_  
PD  
EN  
PE  
VDD  
VDD  
FS  
4F1  
NC  
GND  
GND  
GND  
FBF1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
5F1  
VDDQ  
VDDQ  
VDDQ  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
RxS  
LOCK  
VDD  
TxS  
VDD  
VDD  
4Q0  
J
J
4sOE  
K
K
VDDQ  
VDDQ  
L
L
4F2  
DS1  
QFB  
QFB  
GND  
GND  
5Q1  
5Q0  
5F2  
FBF2  
VDDQ  
M
DS0  
5sOE  
M
1
4
6
8
9
11  
12  
3
5
7
10  
2
BGA  
TOP VIEW  
2
IDT5T2010  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
PINCONFIGURATION  
VDD  
3F2  
51  
50  
49  
48  
47  
46  
1
REF_SEL  
VDD  
2
REF1  
3sOE  
VDDQ  
3
4
REF1/VREF1  
REF0  
VDDQ  
3Q0  
5
REF0/VREF0  
6
45  
3Q1  
3F1  
7
FB  
44  
43  
42  
FB/VREF2  
8
GND  
VDD  
9
VDD  
PE  
10  
11  
12  
13  
14  
15  
16  
17  
4F1  
4Q1  
41  
40  
39  
PD  
PLL_EN  
VDD  
4Q0  
VDDQ  
38  
VDDQ  
4sOE  
4F2  
RxS  
TxS  
37  
36  
35  
LOCK  
VDD  
VDD  
VFQFPN  
TOP VIEW  
3
IDT5T2010  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
ABSOLUTEMAXIMUMRATINGS(1)  
CAPACITANCE(TA=+25°C,F=1MHZ,VIN =  
0V)  
Symbol  
Description  
Max  
–0.5 to +3.6  
–0.5 to +3.6  
–0.5 to VDDQ +0.5  
–0.5 to +3.6  
150  
Unit  
V
VDDQ, VDD Power Supply Voltage(2)  
Parameter  
Description  
Min.  
2.5  
Typ.  
Max.  
3.5  
7
Unit  
VI  
Input Voltage  
V
CIN  
InputCapacitance  
OutputCapacitance  
3
pF  
VO  
Output Voltage  
V
COUT  
6.3  
pF  
VREF  
TJ  
Reference Voltage(3)  
Junction Temperature  
Storage Temperature  
V
°C  
°C  
TSTG  
–65 to +165  
NOTES:  
NOTE:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
1. Capacitance applies to all inputs except RxS, TxS, nF[2:1], FBF[2:1], and DS[1:0].  
2. VDDQ and VDD internally operate independently. No power sequencing requirements  
need to be met.  
3. Not to exceed 3.6V.  
RECOMMENDEDOPERATINGRANGE  
Symbol  
Description  
Min.  
–40  
2.3  
Typ.  
+25  
2.5  
Max.  
+85  
2.7  
Unit  
°C  
V
TA  
AmbientOperatingTemperature  
InternalPowerSupplyVoltage  
(1)  
VDD  
HSTL Output Power Supply Voltage  
Extended HSTL and 1.8V LVTTL Output Power Supply Voltage  
1.4  
1.65  
1.5  
1.8  
1.6  
1.95  
V
V
(1)  
VDDQ  
2.5VLVTTLOutputPowerSupplyVoltage  
TerminationVoltage  
VDD  
V
V
VT  
VDDQ / 2  
NOTE:  
1. All power supplies should operate in tandem. If VDD or VDDQ is at maximum, then VDDQ or VDD (respectively) should be at maximum, and vice-versa.  
PINDESCRIPTION  
Symbol I/O  
Type  
Description  
REF[1:0]  
I
Adjustable(1) Clock input. REF[1:0] is the "true" side of the differential clock input. If operating in single-ended mode,  
REF[1:0] is the clock input.  
REF[1:0]/  
I
Adjustable(1) Complementary clock input. REF[1:0]/VREF[1:0] is the "complementary" side of REF[1:0] if the input is in  
differential mode. If operating  
VREF[1:0]  
in single-ended mode, REF[1:0]/VREF[1:0] is left floating. For single-ended  
operation in differential mode, REF[1:0]/VREF[1:0] should be set  
REF[1:0]:  
to the desired toggle voltage for  
2.5VLVTTL  
VREF = 1250mV (SSTL2 compatible)  
1.8V LVTTL, eHSTL VREF = 900mV  
HSTL  
VREF = 750mV  
VREF = 1082mV  
LVEPECL  
FB  
I
I
Adjustable(1) Clock input. FB is the "true" side of the differential feedback clock input. If operating in single-ended mode,  
FB is the feedback clock input.  
FB/VREF2  
Adjustable(1) Complementary feedback clock input. FB/VREF2 is the "complementary" side of FB if the input is in  
differential mode. If operating in single-ended mode, FB/VREF2 is left floating. For single-ended operation  
in differential mode, FB/VREF2 should be set to the desired toggle voltage for FB:  
2.5VLVTTL  
1.8V LVTTL, eHSTL VREF = 900mV  
HSTL VREF = 750mV  
VREF = 1250mV (SSTL2 compatible)  
NOTE:  
1. Inputs are capable of translating the following interface standards. User can select between:  
LVEPECL  
VREF = 1082mV  
Single-ended 2.5V LVTTL levels  
Single-ended 1.8V LVTTL levels  
or  
Differential 2.5V/1.8V LVTTL levels  
Differential HSTL and eHSTL levels  
Differential LVEPECL levels  
4
IDT5T2010  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
PINDESCRIPTION,CONTINUED  
Symbol I/O  
Type  
Description  
REF_SEL  
I
LVTTL(1)  
Reference clock select. When LOW, selects REF0 and REF0/VREF0. When HIGH, selects REF1 and REF1/  
VREF1.  
nsOE  
I
LVTTL(1)  
Synchronous output enable. When nsOE is HIGH, nQ[1:0] are synchronously stopped. OMODE selects  
whether the outputs are gated LOW/HIGH or tri-stated. When OMODE is HIGH, PE determines the level  
at which the outputs stop. When PE is LOW/HIGH, the nQ[1:0] is stopped in a HIGH/LOW state. When  
OMODE is LOW, the outputs are tri-stated. Set nsOE LOW for normal operation.  
QFB  
QFB  
O Adjustable(2) Feedback clock output  
O Adjustable(2) Complementary feedback clock output  
O Adjustable(2) Five banks of two outputs  
nQ[1:0]  
RxS  
I
I
I
3-Level(3) Selects single-ended 2.5V LVTTL (HIGH), 1.8V LVTTL (MID) REF clock input or differential (LOW) REF  
clock input  
TxS  
3-Level(3) Sets the drive strength of the output drivers and feedback inputs to be 2.5V LVTTL (HIGH), 1.8V LVTTL  
(MID) or HSTL/eHSTL (LOW) compatible. Used in conjuction with VDDQ to set the interface levels.  
PE  
LVTTL(1)  
Selectable positive or negative edge control. When LOW/HIGH the outputs are synchronized with the negative/positive  
edge of the reference clock (has internal pull-up).  
nF[2:1]  
FBF[2:1]  
FS  
I
I
I
I
I
LVTTL(1)  
LVTTL(1)  
LVTTL(1)  
3-Level(3)  
LVTTL(1)  
Function select inputs for divide-by-2, divide-by-4, zero delay, or invert on each bank (See Control Summary table)  
Functionselectinputsfordivide-by-2,divide-by-4,zerodelay,orinvertonthefeedbackbank(SeeControlSummarytable)  
Selects appropriate oscillator circuit based on anticipated frequency range. (See VCO Frequency Range Select.)  
3-level inputs for feedback input divider selection (See Divide Selection table)  
DS[1:0]  
PLL_EN  
PLL enable/disable control. Set LOW for normal operation. When PLL_EN is HIGH, the PLL is disabled and REF[1:0] goes  
to all outputs.  
PD  
I
LVTTL(1)  
Powerdowncontrol. WhenPDisLOW,theinputsaredisabledandinternalswitchingisstopped. OMODEselectswhether  
the outputs are gated LOW/HIGH or tri-stated. When OMODE is HIGH, PE determines the level at which the outputs stop.  
When PE is LOW/HIGH, the nQ[1:0] and QFB are stopped in a HIGH/LOW state, while the QFB is stopped in a LOW/HIGH  
state. When OMODE is LOW, the outputs are tri-stated. Set PD HIGH for normal operation.  
LOCK  
O
I
LVTTL  
PLL lock indication signal. HIGH indicates lock. LOW indicates that the PLL is not locked and outputs may not be  
synchronizedtotheinputs. Theoutputwillbe2.5VLVTTL. (FormoreinformationonapplicationspecificuseoftheLOCK  
pin, pleaseseeAN237.)  
OMODE  
LVTTL(1)  
Outputdisablecontrol. Determinestheoutputs'disablestate. UsedinconjunctionwithnsOEandPD. (SeeOutputEnable/  
Disable and Powerdown tables.)  
NOTES:  
1. Pins listed as LVTTL inputs will accept 2.5V signals under all conditions. If the output is operating at 1.8V or 1.5V, the LVTTL inputs will accept 1.8V  
LVTTL signals as well.  
VDDQ  
PWR  
Power supply for output buffers. When using 2.5V LVTTL, VDDQ should be connected to VDD.  
2. Outputs are user selectable to drive 2.5V, 1.8V LVTTL, eHSTL, or HSTL interface levels when used with the appropriate VDDQ voltage.  
VDD  
PWR  
Power supply for phase locked loop, lock output, inputs, and other internal circuitry  
3. 3-level inputs are static inputs and must be tied to VDD or GND or left floating. These inputs are not hot-insertable or over voltage tolerant.  
OUTPUTENABLE/DISABLE  
GND  
PWR  
Ground  
nsOE  
OMODE  
Output  
Normal Operation  
Tri-State  
VCOFREQUENCYRANGESELECT  
L
H
H
X
L
H
FS(1)  
LOW  
HIGH  
Min.  
Max.  
Unit  
MHz  
MHz  
50  
125  
Gated(1)  
100  
250  
NOTE:  
NOTE:  
1. PE determines the level at which the outputs stop. When PE is LOW/HIGH, the  
nQ[1:0] is stopped in a HIGH/LOW state.  
1. The level to be set on FS is determined by the nominal operating frequency of the  
VCO. The VCO frequency (FNOM) always appears at nQ[1:0] outputs when they are  
operated in their undivided modes. The frequency appearing at the REF[1:0] and  
REF[1:0] /VREF[1:0] and FB and FB/VREF2 inputs will be FNOM when the QFB and QFB  
are undivided and DS[1:0] = MM. The frequency of REF[1:0] and REF[1:0] /VREF[1:0]  
and FB and FB/VREF2 inputs will be FNOM/2 or FNOM/4 when the part is configured for  
frequency multiplication by using a divided QFB and QFB and setting DS[1:0] = MM.  
Using the DS[1:0] inputs allows a different method for frequency multiplication (see  
Divide Selection table).  
POWERDOWN  
PD  
OMODE  
Output  
Normal Operation  
Tri-State  
H
X
L
H
L
L
Gated(1)  
NOTE:  
1. PE determines the level at which the outputs stop. When PE is LOW/HIGH, the  
nQ[1:0] and QFB are stopped in a HIGH/LOW state, while the QFB is stopped in a  
LOW/HIGH state.  
5
IDT5T2010  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
EXTERNALDIFFERENTIALFEEDBACK  
By providing a dedicated external differential feedback, the IDT5T2010  
gives users flexibility with regard to divide selection. The FB and FB/  
VREF2 signals are compared with the input REF[1:0] and REF[1:0]/VREF[1:0]  
signals at the phase detector in order to drive the VCO. Phase differ-  
ences cause the VCO of the PLL to adjust upwards or downwards  
accordingly.  
An internal loop filter moderates the response of the VCO to the  
phase detector. The loop filter transfer function has been chosen to  
provide minimal jitter (or frequency variation) while still providing accu-  
rate responses to input frequency changes.  
DIVIDESELECTIONTABLE  
(1)  
DS [1:0]  
Divide-by-n  
PermittedOutputDivide-by-nconnectedtoFBandFB/VREF2  
LL  
2
3
1, 2  
1
LM  
LH  
4
1, 2  
1, 2  
1, 2, 4  
1, 2  
1
ML  
5
MM  
MH  
HL  
1
6
8
HM  
HH  
10  
12  
1
1
NOTE:  
1. Permissible output division ratios connected to FB and FB/VREF2. The frequencies of the REF[1:0] and REF[1:0]/VREF[1:0] inputs will be FNOM/N when the parts are  
configured for frequency multiplication by using an undivided output for FB and FB/VREF2 and setting DS[1:0] to N (N = 1-6, 8, 10, 12).  
CONTROLSUMMARYTABLEFORALL  
OUTPUTS  
nF2/FBF2  
nF1/FBF1  
OutputSkew  
Divide by 2  
ZeroDelay  
Inverted  
L
L
L
H
L
H
H
H
Divide by 4  
6
IDT5T2010  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
INPUT/OUTPUTSELECTION(1)  
Input  
Output  
Input  
Output  
2.5VLVTTL  
2.5V LVTTL SE  
1.8V LVTTL SE  
2.5V LVTTL DSE  
1.8V LVTTL DSE  
LVEPECL DSE  
eHSTL DSE  
eHSTL  
2.5V LVTTL SE  
1.8V LVTTL SE  
2.5V LVTTL DSE  
1.8V LVTTL DSE  
LVEPECL DSE  
eHSTL DSE  
HSTL DSE  
HSTL DSE  
2.5V LVTTL DIF  
1.8V LVTTL DIF  
LVEPECL DIF  
eHSTL DIF  
2.5V LVTTL DIF  
1.8V LVTTL DIF  
LVEPECL DIF  
eHSTL DIF  
HSTL DIF  
HSTL DIF  
2.5V LVTTL SE  
1.8V LVTTL SE  
2.5V LVTTL DSE  
1.8V LVTTL DSE  
LVEPECL DSE  
eHSTL DSE  
HSTL  
2.5V LVTTL SE  
1.8V LVTTL SE  
2.5V LVTTL DSE  
1.8V LVTTL DSE  
LVEPECL DSE  
eHSTL DSE  
1.8VLVTTL  
HSTL DSE  
HSTL DSE  
2.5V LVTTL DIF  
1.8V LVTTL DIF  
LVEPECL DIF  
eHSTL DIF  
2.5V LVTTL DIF  
1.8V LVTTL DIF  
LVEPECL DIF  
eHSTL DIF  
HSTL DIF  
HSTL DIF  
NOTE:  
1. The INPUT/OUTPUT SELECTION Table describes the total possible combinations of input and output interfaces. Single-Ended (SE) inputs in a single-ended mode require the  
REF[1:0] /VREF[1:0] and FB/VREF2 pins to be left floating. Differential Single-Ended (DSE) is for single-ended operation in differential mode, requiring VREF[1:0] and VREF2. Differential  
(DIF) inputs are used only in differential mode.  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGE  
Symbol  
Parameter  
TestConditions  
Min.  
Max  
Unit  
VIHH  
Input HIGH Voltage Level(1)  
3-Level Inputs Only  
VDD – 0.4  
V
V
V
VIMM  
VILL  
Input MID Voltage Level(1)  
Input LOW Voltage Level(1)  
3-Level Inputs Only  
3-Level Inputs Only  
VDD/2 – 0.2 VDD/2 + 0.2  
0.4  
VIN =VDD  
HIGH Level  
200  
+50  
I3  
3-Level Input DC Current  
(RxS, TxS, DS[1:0])  
VIN =VDD/2  
VIN = GND  
MID Level  
–50  
μA  
NOTE:  
LOW Level  
–200  
1. These inputs are normally wired to VDD, GND, or left floating. Internal termination resistors bias unconnected inputs to VDD/2. If these inputs are switched  
IPU  
Input Pull-Up Current (PE)  
VDD = Max., VIN = GND  
–100  
μA  
dynamically after powerup, the function and timing of the outputs may be glitched, and the PLL may require additional tLOCK time before all datasheet limits  
are achieved.  
7
IDT5T2010  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFORHSTL(1)  
Symbol  
Parameter  
TestConditions  
Min.  
Typ.(7)  
Max  
Unit  
Input Characteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
VDD = 2.7V  
VI =VDDQ/GND  
VI =GND/VDDQ  
±5  
±5  
μA  
Input LOW Current  
VIK  
Clamp Diode Voltage  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
V
VIN  
VDIF  
VCM  
VIH  
VIL  
DC Input Voltage  
- 0.3  
0.2  
DC Differential Voltage(2,8)  
DC Common Mode Input Voltage(3,8)  
DC Input HIGH(4,5,8)  
DC Input LOW(4,6,8)  
Single-Ended Reference Voltage(4,8)  
V
680  
VREF + 100  
750  
750  
900  
mV  
mV  
mV  
mV  
VREF - 100  
VREF  
Output Characteristics  
VOH  
Output HIGH Voltage  
IOH = -8mA  
IOH = -100μA  
IOL = 8mA  
VDDQ - 0.4  
VDDQ - 0.1  
V
V
VOL  
Output LOW Voltage  
0.4  
0.1  
IOL = 100μA  
VOX  
FB/FB Output Crossing Point  
VDDQ/2 - 150 VDDQ/2 VDDQ/2 + 150  
mV  
NOTES:  
1. SeeRECOMMENDEDOPERATINGRANGEtable.  
2. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement"  
inputlevel. Differentialmodeonly. TheDCdifferentialvoltagemustbemaintainedtoguaranteeretainingtheexistingHIGHorLOWinput. TheACdifferential  
voltage must be achieved to guarantee switching to a new state.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
4. For single-ended operation, in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].  
5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
7. Typical values are at VDD = 2.5V, VDDQ = 1.5V, +25°C ambient.  
8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output  
Selection table.)  
POWERSUPPLYCHARACTERISTICSFORHSTLOUTPUTS(1)  
Symbol  
Parameter  
TestConditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current(3)  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
15  
25 mA  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] = LH, Outputs enabled, All outputs unloaded  
Quiescent VDDQ Power Supply Current(3)  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
IDDQQ  
50 μA  
0.7  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] = LH, Outputs enabled, All outputs unloaded  
IDDPD  
Power Down Current  
VDD = Max., PD = LOW, nSOE = LOW, PLL_EN = HIGH 0.8  
3
mA  
IDDD  
Dynamic VDD Power Supply  
Current per Output  
VDD = Max., VDDQ = Max., CL = 0pF  
VDD = Max., VDDQ = Max., CL = 0pF  
13  
20  
μA/MHz  
IDDDQ  
Dynamic VDDQ Power Supply  
16  
25  
μA/MHz  
mA  
Current per Output  
Total Power VDD Supply Current(4)  
ITOT  
VDDQ = 1.5V, FVCO = 100MHz, CL = 15pF  
VDDQ = 1.5V, FVCO = 250MHz, CL = 15pF  
35  
55  
45  
80  
55  
85  
ITOTQ  
NOTES:  
Total Power VDDQ Supply Current(4) VDDQ = 1.5V, FVCO = 100MHz, CL = 15pF  
70  
mA  
VDDQ = 1.5V, FVCO = 250MHz, CL = 15pF  
120  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
4. FS=HIGH.  
8
IDT5T2010  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
DIFFERENTIALINPUTACTESTCONDITIONSFORHSTL  
Symbol  
Parameter  
Value  
Units  
V
VDIF  
Input Signal Swing(1)  
1
VX  
Differential Input Signal Crossing Point(2)  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
750  
mV  
V
VTHI  
Crossing Point  
1
tR,tF  
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device  
meets the VDIF (AC) specification under actual use conditions.  
2. A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets  
the VX specification under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOREHSTL(1)  
Symbol  
Parameter  
TestConditions  
Min.  
Typ.(7)  
Max  
Unit  
Input Characteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
VDD = 2.7V  
VI =VDDQ/GND  
VI =GND/VDDQ  
±5  
±5  
μA  
Input LOW Current  
VIK  
Clamp Diode Voltage  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
V
VIN  
VDIF  
VCM  
VIH  
VIL  
DC Input Voltage  
- 0.3  
0.2  
DC Differential Voltage(2,8)  
DC Common Mode Input Voltage(3,8)  
DC Input HIGH(4,5,8)  
DC Input LOW(4,6,8)  
Single-Ended Reference Voltage(4,8)  
V
800  
VREF + 100  
900  
900  
1000  
mV  
mV  
mV  
mV  
VREF - 100  
VREF  
Output Characteristics  
VOH  
Output HIGH Voltage  
IOH = -8mA  
IOH = -100μA  
IOL = 8mA  
VDDQ - 0.4  
VDDQ - 0.1  
V
V
VOL  
Output LOW Voltage  
0.4  
0.1  
V
IOL = 100μA  
V
VOX  
FB/FB Output Crossing Point  
VDDQ/2 - 150 VDDQ/2 VDDQ/2 + 150  
mV  
NOTES:  
1. SeeRECOMMENDEDOPERATINGRANGEtable.  
2. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement"  
inputlevel. Differentialmodeonly. TheDCdifferentialvoltagemustbemaintainedtoguaranteeretainingtheexistingHIGHorLOWinput. TheACdifferential  
voltage must be achieved to guarantee switching to a new state.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
4. For single-ended operation, in a differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].  
5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
7. Typical values are at VDD = 2.5V, VDDQ = 1.8V, +25°C ambient.  
8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output  
Selection table.)  
9
IDT5T2010  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
POWERSUPPLYCHARACTERISTICSFOREHSTLOUTPUTS(1)  
Symbol  
Parameter  
TestConditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current(3)  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
15  
25 mA  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] = LH, Outputs enabled, All outputs unloaded  
Quiescent VDDQ Power Supply Current(3)  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
IDDQQ  
50 μA  
1.7  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] = LH, Outputs enabled, All outputs unloaded  
IDDPD  
Power Down Current  
VDD = Max., PD = LOW, nSOE = LOW, PLL_EN = HIGH 0.8  
3
mA  
IDDD  
Dynamic VDD Power Supply  
Current per Output  
VDD = Max., VDDQ = Max., CL = 0pF  
VDD = Max., VDDQ = Max., CL = 0pF  
13  
20  
μA/MHz  
IDDDQ  
ITOT  
Dynamic VDDQ Power Supply  
20  
30  
μA/MHz  
mA  
Current per Output  
Total Power VDD Supply Current(4)  
VDDQ = 1.8V, FVCO = 100MHz, CL = 15pF  
VDDQ = 1.8V, FVCO = 250MHz, CL = 15pF  
35  
55  
55  
85  
ITOTQ  
Total Power VDDQ Supply Current(4) VDDQ = 1.8V, FVCO = 100MHz, CL = 15pF  
50  
75  
mA  
NOTES:  
VDDQ = 1.8V, FVCO = 250MHz, CL = 15pF  
115  
175  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
4. FS=HIGH.  
DIFFERENTIALINPUTACTESTCONDITIONSFOREHSTL  
Symbol  
Parameter  
Value  
Units  
V
VDIF  
Input Signal Swing(1)  
1
VX  
Differential Input Signal Crossing Point(2)  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
900  
mV  
V
VTHI  
Crossing Point  
1
tR,tF  
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device  
meets the VDIF (AC) specification under actual use conditions.  
2. A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets  
the VX specification under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
10  
IDT5T2010  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFORLVEPECL(1)  
Symbol  
Parameter  
TestConditions  
Min.  
Typ.(2)  
Max  
Unit  
Input Characteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
VDD = 2.7V  
VI =VDDQ/GND  
VI =GND/VDDQ  
±5  
±5  
μA  
Input LOW Current  
VIK  
Clamp Diode Voltage  
DC Input Voltage  
DC Common Mode Input Voltage(3,5)  
Single-Ended Reference Voltage(4,5)  
DC Input HIGH  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
3.6  
V
VIN  
VCM  
VREF  
VIH  
VIL  
- 0.3  
915  
V
1082  
1082  
1248  
mV  
mV  
mV  
mV  
1275  
555  
1620  
875  
DC Input LOW  
NOTES:  
1. SeeRECOMMENDEDOPERATINGRANGEtable.  
2. Typical values are at VDD = 2.5V, +25°C ambient.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
4. For single-ended operation while in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].  
5. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/  
Output Selection table.)  
DIFFERENTIALINPUTACTESTCONDITIONSFORLVEPECL  
Symbol  
Parameter  
Value  
Units  
mV  
mV  
V
VDIF  
Input Signal Swing(1)  
732  
VX  
Differential Input Signal Crossing Point(2)  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
1082  
VTHI  
Crossing Point  
1
tR,tF  
V/ns  
NOTES:  
1. The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This  
device meets the VDIF (AC) specification under actual use conditions.  
2. A 1082mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets  
the VX specification under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
11  
IDT5T2010  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOR2.5VLVTTL(1)  
Symbol  
Parameter  
TestConditions  
Min.  
Typ.(8)  
Max  
Unit  
Input Characteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
VDD = 2.7V  
VI =VDDQ/GND  
VI =GND/VDDQ  
±5  
±5  
μA  
Input LOW Current  
Clamp Diode Voltage  
DC Input Voltage  
VIK  
VIN  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
V
- 0.3  
Single-EndedInputs(2)  
VIH  
DC Input HIGH  
DC Input LOW  
1.7  
V
V
VIL  
0.7  
DifferentialInputs  
VDIF  
VCM  
VIH  
DC Differential Voltage(3,9)  
DC Common Mode Input Voltage(4,9)  
DC Input HIGH(5,6,9)  
DC Input LOW(5,7,9)  
Single-Ended Reference Voltage(5,9)  
0.2  
1150  
VREF + 100  
1350  
V
1250  
1250  
mV  
mV  
mV  
mV  
VIL  
VREF - 100  
VREF  
Output Characteristics  
VOH  
V
Output HIGH Voltage  
IOH = -12mA  
IOH = -100μA  
IOL = 12mA  
IOL = 100μA  
VDDQ - 0.4  
VDDQ - 0.1  
V
V
V
V
Output LOW Voltage  
0.4  
0.1  
NOTES:  
1. SeeRECOMMENDEDOPERATINGRANGEtable.  
2. For 2.5V LVTTL single-ended operation, the RxS pin is tied HIGH and REF[1:0]/VREF[1:0] is left floating. If TxS is HIGH, FB/VREF2 should be left floating.  
3. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement"  
inputlevel. Differentialmodeonly. TheDCdifferentialvoltagemustbemaintainedtoguaranteeretainingtheexistingHIGHorLOWinput. TheACdifferential  
voltage must be achieved to guarantee switching to a new state.  
4. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
5. For single-ended operation, in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0].  
6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
8. Typical values are at VDD = 2.5V, VDDQ = VDD, +25°C ambient.  
9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output  
Selection table.)  
12  
IDT5T2010  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
POWERSUPPLYCHARACTERISTICSFOR2.5VLVTTLOUTPUTS(1)  
Symbol  
Parameter  
TestConditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current(3)  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
15  
25 mA  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] = LH, Outputs enabled, All outputs unloaded  
Quiescent VDDQ Power Supply Current(3)  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
IDDQQ  
50 μA  
12  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] = LH, Outputs enabled, All outputs unloaded  
IDDPD  
Power Down Current  
VDD = Max., PD = LOW, nSOE = LOW, PLL_EN = HIGH 0.5  
3
mA  
IDDD  
Dynamic VDD Power Supply  
Current per Output  
VDD = Max., VDDQ = Max., CL = 0pF  
VDD = Max., VDDQ = Max., CL = 0pF  
15  
25  
μA/MHz  
IDDDQ  
ITOT  
Dynamic VDDQ Power Supply  
30  
40  
μA/MHz  
mA  
Current per Output  
Total Power VDD Supply Current(4)  
VDDQ = 2.5V., FVCO = 100MHz, CL = 15pF  
VDDQ = 2.5V., FVCO = 250MHz, CL = 15pF  
40  
60  
60  
90  
ITOTQ  
NOTES:  
Total Power VDDQ Supply Current(4) VDDQ = 2.5V., FVCO = 100MHz, CL = 15pF  
80  
120  
300  
mA  
VDDQ = 2.5V., FVCO = 250MHz, CL = 15pF  
200  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
4. FS=HIGH.  
DIFFERENTIALINPUTACTESTCONDITIONSFOR2.5VLVTTL  
Symbol  
Parameter  
Value  
VDD  
Units  
V
VDIF  
Input Signal Swing(1)  
VX  
Differential Input Signal Crossing Point(2)  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
VDD/2  
V
VTHI  
Crossing Point  
2.5  
V
tR,tF  
V/ns  
NOTES:  
1. A nominal 2.5V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This  
device meets the VDIF (AC) specification under actual use conditions.  
2. A nominal 1.25V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device  
meets the VX specification under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2.5V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
SINGLE-ENDEDINPUTACTESTCONDITIONSFOR2.5VLVTTL  
Symbol  
Parameter  
Value  
VDD  
0
Units  
V
VIH  
Input HIGH Voltage  
VIL  
Input LOW Voltage  
V
VTHI  
Input Timing Measurement Reference Level(1)  
Input Signal Edge Rate(2)  
VDD/2  
2
V
tR,tF  
V/ns  
NOTES:  
1. A nominal 1.25V timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.  
2. The input signal edge rate of 2V/ns or greater is to be maintained in the 10% to 90% range of the input waveform.  
13  
IDT5T2010  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOR1.8VLVTTL(1)  
Symbol  
Parameter  
TestConditions  
Min.  
Typ.(8)  
Max  
Unit  
Input Characteristics  
IIH  
IIL  
Input HIGH Current  
VDD = 2.7V  
VDD = 2.7V  
VI =VDDQ/GND  
VI =GND/VDDQ  
±5  
±5  
μA  
Input LOW Current  
Clamp Diode Voltage  
DC Input Voltage  
VIK  
VDD = 2.3V, IIN = -18mA  
- 0.7  
- 1.2  
V
V
VIN  
- 0.3  
VDDQ + 0.3  
Single-EndedInputs(2)  
VIH  
VIL  
DC Input HIGH  
DC Input LOW  
1.073(10)  
0.683(11)  
V
V
DifferentialInputs  
VDIF  
VCM  
VIH  
DC Differential Voltage(3,9)  
DC Common Mode Input Voltage(4,9)  
DC Input HIGH(5,6,9)  
DC Input LOW(5,7,9)  
0.2  
825  
975  
V
900  
900  
mV  
mV  
mV  
mV  
VREF + 100  
VIL  
VREF - 100  
VREF  
Single-Ended Reference Voltage(5,9)  
Output Characteristics  
VOH  
Output HIGH Voltage  
IOH = -6mA  
IOH = -100μA  
IOL = 6mA  
VDDQ - 0.4  
VDDQ - 0.1  
V
V
V
V
W
0.4  
0.1  
IOL = 100μA  
NOTES:  
1. SeeRECOMMENDEDOPERATINGRANGEtable.  
2. For 1.8V LVTTL single-ended operation, the RxS pin is MID and REF[1:0]/VREF[1:0] is left floating. If TxS is MID, FB/VREF2 should be left floating.  
3. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement"  
inputlevel. Differentialmodeonly. TheDCdifferentialvoltagemustbemaintainedtoguaranteeretainingtheexistingHIGHorLOWinput. TheACdifferential  
voltage must be achieved to guarantee switching to a new state.  
4. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
5. For single-ended operation in differential mode, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0]. The input is guaranteed to toggle within ±200mV of  
VREF[1:0] when VREF[1:0] is constrained within +600mV and VDDI-600mV, where VDDI is the nominal 1.8V power supply of the device driving the REF[1:0]  
input. To guarantee switching in voltage range specified in the JEDEC 1.8V LVTTL interface specification, VREF[1:0] must be maintained at 900mV with  
appropriate tolerances.  
6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
8. Typical values are at VDD = 2.5V, VDDQ = 1.8V, +25°C ambient.  
9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. (See Input/Output  
Selection table.)  
10.  
This value is the worst case minimum VIH over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is VIH = 0.65  
* VDD where VDD is 1.8V ± 0.15V. However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the  
specification, the translator was designed to accept the calculated worst case value ( VIH = 0.65 * [1.8 - 0.15V]) rather than reference against a nominal  
1.8V supply.  
11.  
This value is the worst case maximum VIL over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is VIL = 0.35  
* VDD where VDD is 1.8V ± 0.15V. However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the  
specification, the translator was designed to accept the calculated worst case value ( VIL = 0.35 * [1.8 + 0.15V]) rather than reference against a nominal  
1.8V supply.  
14  
IDT5T2010  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
POWERSUPPLYCHARACTERISTICSFOR1.8VLVTTLOUTPUTS(1)  
Symbol  
Parameter  
TestConditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current(3)  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
15  
25 mA  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] = LH, Outputs enabled, All outputs unloaded  
Quiescent VDDQ Power Supply Current(3)  
VDDQ = Max., REF = LOW, PD = HIGH, nSOE = LOW,  
IDDQQ  
50 μA  
1.5  
PLL_EN = HIGH, DS[1:0] = MM, nF[2:1] = LH,  
FBF[2:1] = LH, Outputs enabled, All outputs unloaded  
IDDPD  
Power Down Current  
VDD = Max., PD = LOW, nSOE = LOW, PLL_EN = HIGH 0.5  
3
mA  
IDDD  
Dynamic VDD Power Supply  
Current per Output  
VDD = Max., VDDQ = Max., CL = 0pF  
VDD = Max., VDDQ = Max., CL = 0pF  
16  
25  
μA/MHz  
IDDDQ  
ITOT  
Dynamic VDDQ Power Supply  
Current per Output  
Total Power VDD Supply Current(4)  
22  
30  
μA/MHz  
mA  
VDDQ = 1.8V., FVCO = 100MHz, CL = 15pF  
VDDQ = 1.8V., FVCO = 250MHz, CL = 15pF  
40  
70  
60  
105  
85  
ITOTQ  
NOTES:  
Total Power VDDQ Supply Current(4) VDDQ = 1.8V., FVCO = 100MHz, CL = 15pF  
55  
mA  
VDDQ = 1.8V., FVCO = 250MHz, CL = 15pF  
135  
205  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
4. FS=HIGH.  
DIFFERENTIALINPUTACTESTCONDITIONSFOR1.8VLVTTL  
Symbol  
Parameter  
Value  
VDDI  
Units  
V
VDIF  
Input Signal Swing(1)  
VX  
Differential Input Signal Crossing Point(2)  
Input Timing Measurement Reference Level(3)  
Input Signal Edge Rate(4)  
VDDI/2  
mV  
V
VTHI  
Crossing Point  
1.8  
tR,tF  
V/ns  
NOTES:  
1. VDDI is the nominal 1.8V supply (1.8V ± 0.15V) of the part or source driving the input. A nominal 1.8V peak-to-peak input pulse level is specified to allow  
consistent, repeatableresultsinanautomatictestequipment(ATE)environment. ThisdevicemeetstheVDIF (AC)specificationunderactualuseconditions.  
2. A nominal 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device  
meets the VX specification under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1.8V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
SINGLE-ENDEDINPUTACTESTCONDITIONSFOR1.8VLVTTL  
Symbol  
Parameter  
Value  
VDDI  
0
Units  
V
VIH  
Input HIGH Voltage(1)  
VIL  
Input LOW Voltage  
V
VTHI  
Input Timing Measurement Reference Level(2)  
Input Signal Edge Rate(3)  
VDDI/2  
2
mV  
V/ns  
tR,tF  
NOTES:  
1. VDDI is the nominal 1.8V supply (1.8V ± 0.15V) of the part or source driving the input.  
2. A nominal 900mV timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.  
3. The input signal edge rate of 2V/ns or greater is to be maintained in the 10% to 90% range of the input waveform.  
15  
IDT5T2010  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
ACELECTRICALCHARACTERISTICSOVEROPERATINGRANGE  
Symbol  
FNOM  
tRPW  
Parameter  
Min.  
Typ.  
Max  
Unit  
VCO Frequency Range  
see VCO Frequency Range Select Table  
Reference Clock Pulse Width HIGH or LOW  
1
1
ns  
ns  
tFPW  
Feedback Input Pulse Width HIGH or LOW  
tSK(B)  
tSK(O)  
Output Matched Pair Skew(1,2,4)  
Output Skew (Rise-Rise, Fall-Fall, Nominal)(1,3)  
50  
ps  
100  
ps  
ps  
tSK1(ω)  
Multiple Frequency Skew (Rise-Rise, Fall-Fall, Nominal-Divided, Divided-Divided)(1,3,4)  
100  
tSK2(ω)  
tSK1(INV)  
tSK2(INV)  
tSK(PR)  
t(φ)  
Multiple Frequency Skew (Rise-Fall, Nominal-Divided, Divided-Divided)(1,3,4)  
Inverting Skew (Nominal-Inverted)(1,3)  
Inverting Skew (Rise-Rise, Fall-Fall, Rise-Fall, Inverted-Divided)(1,3,4)  
Process Skew(1,3.5)  
400  
400  
400  
300  
ps  
ps  
ps  
ps  
REF Input to FB Static Phase Offset(6)  
-100  
100  
ps  
tODCV  
Output Duty Cycle Variation from 50%(7)  
HSTL / eHSTL / 1.8V LVTTL  
-375  
375 ps  
tORISE  
tOFALL  
tL  
2.5VLVTTL  
-275  
275  
1.2  
1
Output Rise Time(8)  
HSTL / eHSTL / 1.8V LVTTL  
2.5VLVTTL  
ns  
ns  
Output Fall Time(8)  
HSTL / eHSTL / 1.8V LVTTL  
2.5VLVTTL  
1.2  
1
Power-up PLL Lock Time(9)  
1
ms  
1
tL(ω)  
PLL Lock Time After Input Frequency Change(9)  
ms  
tL(REFSEL1)  
PLL Lock Time After Change in REF_SEL (9,11)  
50  
75  
100  
1
μs  
tL(REFSEL2)  
PLL Lock Time After Change in REF_SEL (REF1 and REF0 are different frequency)(9)  
ms  
tL(PD)  
PLL Lock Time After Asserting PD Pin(9)  
1
NOTES:  
ms  
2.  
1. Skew is the time between the earliest and latest output transition among all outputs when all outputs are loaded with the specified load.  
tSKt(BJI)T(isCCth)e skew between a pair of outputs (nQ0 and nQ1) when all outpu(t1s0)are selected as the same class.  
Cycle-to-Cycle Output Jitter (peak-to-peak)  
75  
ps  
3. The measurement is made at VDDQ/2.  
ps  
4. There are three classes of outputs: nominal (zero delay), inverted, and divided (divide-by-2 or divide-by-4 mode).  
tJIT(PER)  
Period Jitter (peak-to-peak)(10)  
Half Period Jitter (peak-to-peak, QFB/QFB only)(10, 12)  
Duty Cycle Jitter (peak-to-peak)(10)  
5. tSK(PR) is the output to corresponding output skew between any two devices operating under the same conditions (VDD and VDDQ, ambient temperature, air flow,  
etc.).  
tJIT(HP)  
125  
ps  
6. t(φ) is measured with REF and FB the same type of input, the same rise and fall times. For TxS/RxS = MID or HIGH, the measurement is taken from VTHI on  
tJIT(DUTY)  
100  
ps  
REF to VTHI on FB. For TxS/RxS = LOW, the measurement is taken from the crosspoint of REF/REF to the crosspoint of FB/FB. All outputs are set to zero delay,  
FB input divider set to divide-by-one, and FS = HIGH.  
VOX  
HSTL and eHSTL Differential True and Complementary Output Crossing Voltage LevelVDDQ/2 - 150  
VDDQ/2  
7. tODCV is measured with all outputs selected for zero delay.  
VDDQ/2 + 150  
mV  
8. Output rise and fall times are measured between 20% to 80% of the actual output voltage swing.  
QFB/QFB only(12)  
9. tL, tL(ω), tL(REFSEL1), tL(REFSEL2), and tL(PD) are the times that are required before the synchronization is achieved. These specifications are valid only after VDD/  
VDDQ is stable and within the normal operating limits. These parameters are measured from the application of a new signal at REF or FB, or after PD is (re)asserted  
until t(φ) is within specified limits.  
10. The jitter parameters are measured with all outputs selected for zero delay, FB input divider is set to divide-by-one, and FS = HIGH.  
11. Both REF inputs must be the same frequency, but up to ±180° out of phase.  
12. For HSTL/eHSTL outputs only.  
16  
IDT5T2010  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
ACDIFFERENTIALINPUTSPECIFICATIONS(1)  
Symbol  
Parameter  
Min.  
Typ.  
Max  
Unit  
tW  
Reference/Feedback Input Clock Pulse Width HIGH or LOW (HSTL/eHSTL outputs)(2)  
1
ns  
Reference/Feedback Input Clock Pulse Width HIGH or LOW (2.5V / 1.8V LVTTL outputs)(2)  
1
HSTL/eHSTL/1.8VLVTTL/2.5VLVTTL  
VDIF  
VIH  
AC Differential Voltage(3)  
AC Input HIGH(4,5)  
AC Input LOW(4,6)  
400  
Vx + 200  
mV  
mV  
mV  
VIL  
Vx - 200  
LVEPECL  
VDIF  
AC Differential Voltage(3)  
AC Input HIGH(4)  
AC Input LOW(4)  
400  
1275  
mV  
mV  
mV  
VIH  
VIL  
875  
NOTES:  
1. For differential input mode, RxS is tied to GND.  
2. Both differential input signals should not be driven to the same level simultaneously. The input will not change state until the inputs have crossed and  
the voltage range defined by VDIF has been met or exceeded.  
3. Differential mode only. VDIF specifies the minimum input voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the  
"complement" input level. The AC differential voltage must be achieved to guarantee switching to a new state.  
4. For single-ended operation, REF[1:0]/VREF[1:0] is tied to the DC voltage VREF[1:0]. Refer to each input interface's DC specification for the correct VREF[1:0]  
range.  
5. Voltage required to switch to a logic HIGH, single-ended operation only.  
6. Voltage required to switch to a logic LOW, single-ended operation only.  
17  
IDT5T2010  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
ACTIMINGDIAGRAM(1)  
tRPWL  
tRPWH  
REF  
REF  
tFPWH  
tFPWL  
tODCV  
tODCV  
tODCV  
FB  
FB  
tODCV  
Q
tSK(O),  
tSK(B)  
tSK(O),  
tSK(B)  
OTHER Q  
tSK1(INV)  
tSK1(INV)  
INVERTED Q  
tSK2( ),  
tSK2(INV)  
tSK2(INV)  
tSK2( )  
tSK1( )  
Q DIVIDED BY 2  
tSK1( ),  
tSK2(INV)  
Q DIVIDED BY 4  
NOTE:  
1. The AC TIMING DIAGRAM applies to PE = VDD. For PE = GND, the negative edge of FB aligns with the negative edge of REF[1:0], divided outputs change on the negative  
edge of REF[1:0], and the positive edges of the divide-by-2 and divide-by-4 signals align.  
18  
IDT5T2010  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
JITTERANDOFFSETTIMINGWAVEFORMS  
QFB  
nQ[1:0], QFB  
tcycle n  
tcycle n + 1  
=
tjit(cc) tcycle n tcycle n+1  
Cycle-to-Cycle jitter  
REF[1:0]  
REF[1:0]  
FB  
FB  
t(Ø)n + 1  
t(Ø)n  
n = N  
1
t(Ø)n  
=
t(Ø)  
(N is a large number of samples)  
N
Static Phase Offset  
NOTE:  
1. Diagram for PE = H and TxS/RxS = L.  
QFB  
nQ[1:0], QFB  
tW(MIN)  
tW(MAX)  
tJIT(DUTY) = tW(MAX) - tW(MIN)  
Duty-Cycle Jitter  
19  
IDT5T2010  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
QFB  
nQ[1:0], QFB  
tcycle n  
QFB  
nQ[1:0], QFB  
1
f
o
1
o
=
tjit(per) tcycle n  
f
Period jitter  
NOTE:  
1. 1/fo = average period.  
QFB  
QFB  
thalf period n+1  
thalf period n  
QFB  
QFB  
1
f
o
1
2* f  
=
tjit(hper) thalf period n  
o
Half-Period jitter  
NOTE:  
1. 1/fo = average period.  
20  
IDT5T2010  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
TESTCIRCUITSANDCONDITIONS  
VDDI  
R1  
R2  
3 inch, ~50  
Transmission Line  
VIN  
VDDQ  
VDD  
VDDI  
REF[1:0]  
D.U.T.  
Pulse  
Generator  
R1  
R2  
REF[1:0]  
3 inch, ~50  
Transmission Line  
VIN  
TestCircuitforDifferentialInput(1)  
DIFFERENTIALINPUTTESTCONDITIONS  
Symbol  
VDD = 2.5V ± 0.2V  
Unit  
R1  
100  
100  
Ω
Ω
R2  
VDDI  
VCM*2  
V
HSTL: Crossing of REF[1:0] and REF[1:0]  
eHSTL: Crossing of REF[1:0] and REF[1:0]  
LVEPECL: Crossing of REF[1:0] and REF[1:0]  
1.8V LVTTL: VDDI/2  
VTHI  
V
2.5V LVTTL: VDD/2  
NOTE:  
1. This input configuration is used for all input interfaces. For single-ended testing,  
the REF[1:0] must be left floating. For testing single-ended in differential input  
mode, the VIN should be floating.  
21  
IDT5T2010  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
VDDQ  
VDDQ  
R1  
VDDQ  
VDD  
VDDQ  
VDD  
R1  
R2  
REF[1:0]  
R2  
CL  
REF[1:0]  
nQ[1:0]  
VDDQ  
QFB  
D.U.T.  
D.U.T.  
FB  
FB  
QFB  
QFB  
R1  
R2  
CL  
FB  
FB  
QFB  
CL  
SW1  
SW1  
TestCircuitforOutputs  
TestCircuitforDifferentialFeedback  
DIFFERENTIALFEEDBACKTEST  
CONDITIONS  
OUTPUTTESTCONDITIONS  
Symbol  
VDD = 2.5V ± 0.2V  
VDDQ = Interface Specified  
15  
Unit  
Symbol  
VDD = 2.5V ± 0.2V  
Unit  
VDDQ = Interface Specified  
CL  
R1  
pF  
Ω
Ω
V
CL  
R1  
15  
100  
pF  
Ω
Ω
100  
R2  
100  
R2  
100  
VOX  
HSTL: Crossing of QFB and QFB  
eHSTL: Crossing of QFB and QFB  
1.8V LVTTL: VDDQ/2  
2.5V LVTTL: VDDQ/2  
TxS = MID or HIGH  
TxS = LOW  
VTHO  
SW1  
VDDQ / 2  
V
TxS = MID or HIGH  
TxS = LOW  
Open  
Closed  
VTHO  
V
SW1  
Open  
Closed  
22  
IDT5T2010  
INDUSTRIALTEMPERATURERANGE  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
RECOMMENDEDLANDINGPATTERN  
NL 68 pin  
NOTE: All dimensions are in millimeters.  
23  
IDT5T2010  
2.5VZERODELAYPLLCLOCKDRIVER TERACLOCK  
INDUSTRIALTEMPERATURERANGE  
ORDERINGINFORMATION  
IDT  
XXXXX  
XX  
X
Device Type Package Package  
I
-40ºC to +85ºC (Industrial)  
BBG  
NLG  
BGA - Green  
VFQFPN - Green  
5T2010 2.5V Zero Delay PLL Clock Driver Teraclock  
REVISIONHISTORY  
11/26/13 PRODUCT DISCONTINUATION NOTICE - LAST TIME BUY EXPIRES (OCTOBER 28, 2014) PDN# CQ-13-02  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
clockhelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
24  
厂商 型号 描述 页数 下载

IDT

5T2010BBGI8 [ PLL Based Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), PBGA144, GREEN, PLASTIC, BGA-144 ] 24 页

IDT

5T2010BBI [ PLL Based Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), PBGA144, PLASTIC, BGA-144 ] 24 页

IDT

5T2010BBI8 [ PLL Based Clock Driver, 5T Series, 10 True Output(s), 0 Inverted Output(s), PBGA144, PLASTIC, BGA-144 ] 24 页

IDT

5T2010NLGI [ VFQFPN-68, Tray ] 24 页

IDT

5T2010NLGI8 [ VFQFPN-68, Reel ] 24 页

IDT

5T2010NLI [ Low Skew Clock Driver, PQCC68 ] 24 页

IDT

5T2010NLI8 [ Low Skew Clock Driver, PQCC68 ] 24 页

IDT

5T2110BBI8 [ Clock Driver, PBGA144 ] 24 页

IDT

5T2110NLGI8 [ PLL Based Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), PQCC68, GREEN, PLASTIC, VFQFP-68 ] 24 页

IDT

5T2110NLI8 [ Clock Driver, PQCC68 ] 24 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.171000s