找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

IXHQ100

型号:

IXHQ100

描述:

负电压热插拔控制器,有源电力滤波器[ Negative Voltage Hot Swap Controller with Active Power Filter ]

品牌:

IXYS[ IXYS CORPORATION ]

页数:

9 页

PDF大小:

115 K

IXHQ 100PI  
IXHQ 100SI  
Nega tive Volta ge Hot Sw a p Con tr oller  
w ith Active P ow er F ilter  
Description  
Features  
TheIXHQ100isaliveinsertionandremovalhotswap  
controller with a built-in power noise filter. It incorpo-  
rates all the active circuitry necessary to protect circuit  
boards during live insertion or removal (insertion or  
removal when the system power is active). Additionally,  
the IXHQ100 incorporates two unique features: power  
active filter for powerline noise suppression and power  
auto-disconnect detector which eliminates the need of  
additional staggered pins.  
• Live Insertion and Removal Power Manager  
• Adjustable Power-on slew rate  
• Autodetect of Load Open Circuit or -VIN  
Disconnection  
• Controlled Time-Delay  
• Operates from –9 V to External MOSFET Voltage  
Limit  
• Fault Indication Output (microprocessor reset).  
• Board Insertion/Removal Detector Input  
• Protection During Turn-On  
The IXHQ100 shunt regulator ensures a wide operating  
voltage range (with the external MOSFET breakdown  
voltage as limit). The active power filter reduces power  
source output impedance, producing "clean" load  
power. The IXHQ100 allows continuous load current  
rise adjustments, presettable maximum current limits,  
and user selectable fault indication turn off times for  
resetting µPs and other synchronous board level sys-  
tems. For added flexibility, GSNSin pin is available to  
implementeithercircuitboardinsertion/removaldetec-  
tion or ground detection.  
• Low frequency Power Active Filter  
• Adjustable Electronic Circuit Breaker  
• Vin undervoltage with GSNSin input  
Applications  
• Arcless card insertion and removal  
• Central Office Switching Hardware  
• Circuit Boards From -48 V Distributed Power  
Supplies  
• Circuit Board Power Manager and Noise Filter  
• Circuit Board Hot Swap Protector and Manager  
• Electronic Circuit Breaker  
US Patents Pending.  
• Wireless Local Loop Antennas  
• Cable TV Antenna  
Typical Application with Auto-Disconnect Detector  
CAUTION: These devices are  
sensitvie to electrostatic discharge;  
take caution when handling and  
assembling this component.  
Figure 1  
IXYS reserves the right to change limits, test conditions and dimensions.  
Copyright © IXYS CORPORATION 2000  
www.ixys.com  
98716 (08/14/00)  
1
                                                    
                                                    
                                                      
                                                       
                                                        
                                                         
                                                          
                                                          
                                                           
                                                           
                                                             
                                                             
                                                              
                                                              
                                                               
                                                               
                                                                
                                                                
                                                                  
                                                                  
                                                                                                 
                                                                                                 
                                                                                                    
                                                                                                    
                                                                                                      
                                                                                                      
                                                                                                        
                                                                                                        
                                                                                                          
                                                                                                          
                                                                                                            
                                                                                                             
                                                                                                              
                                                                                                               
                                                                                                                
                                                                                                                
                                                                                                                 
                                                                                                                 
                                                                                                                   
                                                                                                                   
IXHQ 100PI  
IXHQ 100SI  
Pin Description  
Absolute Maximum Ratings  
Symbol  
D
e
f
i
n
i
t
i
o
n
M
a
x
.
R
a
t
i
n
g
VCC-VAGND  
Voltage applied VCCin to AGND Shunt Off: -0.3 V to 16 V  
Shunt On:  
-0.3 V to 14 V  
14V to 16 V  
-0.3 V to VCCin + 0.3 V  
60 mA  
Shunt On for 10 seconds  
All other pins except VDC  
VDD Load Current  
Maximum Junction Temperature  
Operating Temperature Range  
StorageTemperatureRange  
Supply Current with Shunt On  
IVDD  
TJM  
TJ0  
Tstg  
IDD  
125 oC  
-40 oC to 85 oC  
-40 oC to 150 oC  
25 mA  
Electrical Characteristics  
Unless otherwise noted, TA = 25 oC; -VIN= 48 V, AGND connected to -VIN, VSHUNToff = 5 V, VCC = 12 V, VGSNSin= 12 V. All voltage measurements  
with respect to AGND. IXHQ100 configured as described in Test Conditions.  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max Units  
ICC  
Supply current  
VCC=12 V, VSHUNToff = VCC,  
all outputs unloaded.  
2
3
16  
2
mA  
VCCSHUNT  
VTHSHUNToff  
ISHUNToff  
VTHINV  
VCC shunt regulation  
voltage  
ICC forced to 10 mA  
when shunt is off  
12  
1
13.8  
1.5  
0
V
SHUNToff input  
threshold voltage  
VCC = 15 V, monitor RSTOUT  
VCC = 12 V, monitor RSTOUT  
VCC = 12 V, monitor RSTOUT  
V
SHUNToff input  
bias current  
-1  
1
µA  
V
INV input  
threshold voltage  
6
8
10  
180  
6
RINV  
INV input  
resistance  
70  
4.5  
-2.6  
130  
5.8  
-2.3  
KΩ  
V
VTHGSNS  
IGSNSin  
GSNS sense input  
threshold voltage  
GSNSin input  
bias current  
-2  
µA  
ICAPin  
CAPin input bias current  
Active filter offset voltage  
VDROP input resistance  
-1  
0.7  
50  
0
1
µA  
V
VVDROP  
RVDROP  
0.9  
70  
1.1  
90  
KΩ  
ISLOPE  
SLOPE capacitor  
charging current  
VOFFTM = 5 V, VGSOURCE = 0 V  
VCAPin= 5 V  
70  
85  
90  
110  
200  
120  
200  
mA  
RSLOPEDCHG  
IOFFTM  
SLOPE capacitor  
discharge resistance  
VDROP = 5 V, IVT = VCC  
VSOURCE = 0 V, VCAPin= 5 V  
OFFTM capacitor  
charging current  
VDROP = 5 V, VSOURCE = 0 V  
VCAPin= 5 V  
80  
100  
111  
mA  
ROFFTMCHG  
OFFTM capacitor  
discharge resistance  
VTHOFFTM  
OFFTM input threshold  
voltage  
OFFTM input voltage when SLOPE  
input voltage starts its ramp  
3.8  
90  
4.5  
5.5  
V
VCL  
Overcurrent threshold bias voltage  
125  
150  
mV  
2
IXHQ 100PI  
IXHQ 100SI  
Electrical Characteristics (continued)  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max Units  
RVCL  
tOC  
VCL bias resistance  
4
6
10  
30  
kΩ  
Overcurrent detection  
to GATE output delay  
VCAPin = 0 V; VOUTsns = 5 V  
VSOURCE input is a step at t = 0s  
from 0 V to 200 mV  
20  
ms  
dvGATE/dt  
VGATE  
GATE output slew rate  
CSLOPE= 100 nF  
0.5  
0.8  
1.1 V/ms  
Maximum GATE  
output voltage  
VCAPin = 0 V; R = 10 KΩ  
13.8  
15  
V
load  
VOUTsns = 5 V  
IGATE  
IGATE  
GATE pull-up current  
Gate drive on, VGATE = 0 V  
-15  
20  
-10  
mA  
mA  
GATE pull-down  
current  
Gate drive off  
VGATE = 10 V  
10  
5
VDD  
VDD regulator output  
Voltage  
3.3K Resistive load  
between VDD output and AGND  
5.75  
6.5  
V
IRSTout  
tRST  
RSTout drive current  
RST pulse width  
Force VRSTout =1 V during fault condition 2.4  
200  
3
3.6  
1000  
20  
mA  
ns  
500  
12  
Vad  
Auto-Detect threshold  
Gate drive on; ramp VOUTsns; monitor  
RST until it pulses.  
-10  
mV  
Note 1: Operating the device beyond parameters with listed “absolute maximum ratings” may cause permanent damage to the  
device. Typical values indicate conditions for which the device is intended to be functional, but do not guarantee specific  
performance limits. The guaranteed specifications apply only for the test conditions listed. Exposure to absolute maximum  
rated conditions for extended periods may affect device reliability.  
Note2: All voltages are relative to ground unless otherwise specified.  
Typical Performance Characteristics  
Graph 2: Regulator Output Voltage vs. Temperature  
Graph 1: Icc vs. Temperature  
2.18  
2.16  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
o
Temperature ( C)  
o
Temperature ( C)  
3
IXHQ 100PI  
IXHQ 100SI  
Graph 3: SLOPE Pin current vs. Temperature  
94  
Graph 4: OFFTM Threshold Voltage vs. Temperature  
6
92  
90  
88  
86  
84  
82  
80  
78  
76  
5
4
3
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
o
o
Temperature ( C)  
Temperature ( C)  
Graph 5: Vcc Shunt Voltage vs. Temperature  
Graph 6: Overcurrent Threshold Voltage vs. Temperature  
14.4  
136  
134  
132  
130  
128  
126  
124  
122  
120  
118  
14.2  
14.0  
13.8  
13.6  
13.4  
13.2  
ICC = 1mA  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
o
o
Temperature ( C)  
Temperature ( C)  
Graph 8: Vdrop Voltage vs. Temperature  
Graph 7: Supply Current vs. Shunt Voltage  
1.00  
60  
0.98  
0.96  
0.94  
0.92  
0.90  
0.88  
0.86  
0.84  
50  
40  
30  
20  
10  
0
-60 -40 -20  
0
20 40 60 80 100  
4
6
8
10 12 14 16 18  
Vshunt (V)  
o
Temperature ( C)  
4
IXHQ 100PI  
IXHQ 100SI  
Graph 9: Gate Voltage vs. Supply Voltage  
16  
Graph 10: Typical Noise Attenuation  
20  
10  
14  
12  
10  
8
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
6
0
20  
40  
60  
80  
100  
120  
1e+1 1e+2 1e+3 1e+4 1e+5 1e+6  
Supply Voltage (V)  
Frequency (Hz)  
Pin Descriptions  
PIN # SYMBOL  
FUNCTION  
DESCRIPTION  
The invert input controls GSNSin’s polarity. When  
invert input is high compared to AGND, then GSNSin  
low indicates an insertion/removal event. When invert  
input is low, then GSNSin high indicates an  
insertion/removal event.  
Invert  
Input  
INV  
1
The INV pin controls the polarity sense of this input.  
A 3uA internal pull-up current source causes logic  
high when there is no connection at this pin. With INV  
Ground Sense low or connected to AGND, a GSNSin low (or  
15  
GSNSin  
Input  
connected to AGND) will keep RSTout and GATE  
low, and the external power switch, Q1, off. A  
disconnected GSNSin pin or when Vcc is applied to it  
will allow normal operation  
2
3
VCCin  
Supply Voltage Positive power-supply voltage input.  
This pin serves to control the enabling of the shunt  
circuit. When the pin is high compared to AGND, then  
the shunt regulator is in off position. A low level at  
this pin activates the shunt regulator.  
SHNToff  
Shunt Off  
The output of the power active filter tracks this pin.  
Adding an external RC network matching the input  
noise with respect to the 3db point of the filter could  
reduce the noise to a minimum.  
Active low-  
pass filter  
capacitor input  
4
5
6
CAPin  
VDROP  
SLOPE  
Active filter  
This pin sets the drop out MOSFET voltage across the  
offset voltage active filter.  
This input controls the current slope during power up  
and controls inrush currents. Adding external  
capacitors to this pin allow regulation and adjustment  
of the rate of the current slope.  
Slope input  
The OFFTM pin sets the delay time between power-  
down and restart of IXHQ100. Delay time can be  
increased by adding external capacitors to this pin.  
The IXHQ100 system zero reference pin.  
7
8
OFFTM  
AGND  
Off-time  
Ground  
5
IXHQ 100PI  
IXHQ 100SI  
Pin Descriptions (continued)  
PIN #  
SYMBOL  
FUNCTION  
DESCRIPTION  
Regulator  
Regulator output voltage provides current to drive the  
9
VDDout  
output voltage external circuits with respect to AGND.  
Sets the overcurrent threshold bias voltage.  
Overcurrent  
threshold bias  
voltage  
10  
VCL  
Input for sensing current through power device with  
respect to AGND.  
Current input  
sensor  
11  
SOURCE  
12  
13  
GATE  
Output  
Out sensor  
signal  
Control voltage for driving external MOSFET.  
This signal senses the output voltage of the circuit.  
OUTsns  
A low at this pin indicates detection of an  
insert/removal event or overcurrent detection.  
Not Connected  
14  
16  
RSTout  
NC  
Output Reset  
N/A  
IXHQ100 Logic Diagram  
Figure 2  
6
IXHQ 100PI  
IXHQ 100SI  
the external load, Vload, is zero. As VSLOPE rises,  
its rate of increase determined by the value of  
the external capacitor, C8 (figure1), and the  
value of the internal current source, I5. VGATE's  
rateofincreasefollowsVSLOPE. AssoonasVGATE  
exceeds VthQ1 (figure 1) of the external power  
MOSFET, drain current IdQ1 starts to flow. The  
rateofincreaseofIdQ1 isproportionaltotherate  
of increase of VSLOPE, and is independent of the  
size of C5 , the total filter capacitance of the  
load. Note that this rate, which is directly  
proportionaltoC7and inversely proportionalto  
C8, couldbeadjusted.Similarly theToff-delay  
can be adjusted and is directly proportional to  
the size of C7.  
DEVICE OPERATION*  
A hot swap operation involves removal and  
reinsertion of a device while the system using  
it remains in operation. Such an operation  
could cause external capacitors to draw cur-  
rentshighenoughtodisturbsystemoperations  
or even cause permanent damage to both the  
deviceandthesystem.  
TheIXHQ100isdesignedtopreventanydistur-  
bances or damage during such occurrences,  
allowing the circuit board to be safely inserted  
andremovedfromalivebackplane. Capableof  
operatingunderthreemodes,thechipalsoacts  
asapoweractivenoisefilterandanauto-detect  
circuit.  
Normal Operation  
With continuous Vin applied, the IXHQ100  
acts as an active power filter by modulating the  
voltage drop across the external Power  
MOSFET Vds so that any noise on Vin is  
cancelled by Vds.  
The direct connection of IXHQ 100s AGND pin  
toVin allowstheVdrop (internallysetto~750mV)  
to set the ~90% of the maximum peak noise  
voltage reject by the IXHQ100. The internal  
Vdrop setting of ~750 mV allows 1.35 Vpp of  
noiserejection. Graphonpage5 illustratesthe  
level of ripple attenuation during normal  
conditions.Noticethatthenoiserejectionisvery  
high(~60db)between400Hzto40KHz,whichis  
optimal for most hot swap applications.  
Insertion Process  
As the circuit board is inserted into the  
backplane, physical connections should be  
made to ground to discharge any electrostatic  
voltage. The insertion process begins when  
power and ground are supplied to the board  
through pins on the blackplane.  
Once power is applied, the IXHQ100 starts up  
but does not immediately apply power to the  
output load. The internal Power Up Reset logic  
(see in Figure 2) turns on for 10 µs prior to any  
other logic. This pulse goes through two NOR  
gatesandresetsSRFF1FlipFlop. OnceSRFF1  
is reset, the current source, I6, charges the  
OFFTM pin at a rate proportional to the size of  
theexternalcapacitor,C7(fig1).Duringthetime  
theOFFTMpinisrampingfrom0VtoVrf(~5V),  
which is the Toff-delay, COMP1 keeps N3 ON so  
VSLOPE stays at 0V. After Toff-delay, VOFFTMecomes  
greater than Vrf, and COMP1 goes low, driving  
N3 to off state. I5 now starts to charge C1,  
ramping+ve i/p ofOA4.OA4buffersVSLOPE and  
setstheGATEoutputramp.  
Flip-flop setting and resetting  
Theflip-flop,SRFF1(fig2),usedintheIXHQ100,  
is reset dominant. Hence when both S and R  
inputs are driven high, the SRFF1 remains  
reset. Undernormaloperation,Sinputbecomes  
high whenever OR1 output is high and R input  
is low. In turn, OR1 goes high if any one of the  
outputs of EXOR1, or COMP2, or COMP3  
goes high.  
It is assumed that when the circuit board is first  
inserted into the backplane, the voltage across  
EXOR1 output goes high if it detects the loss of  
either Gnd or -Vin. If INV input is connected to  
*Unless otherwise stated, all symbol and device references are referred to the logic diagram (Fig 2) on page 6  
7
IXHQ 100PI  
IXHQ 100SI  
Vcc, then GSNSin pin can be used to detect  
the presence or absence of -Vin. If INV is  
connected to AGND, then GSNSin pin can be  
used to detect the presence or absence of  
Gnd.  
with a high applied to its R input. This act will  
then turn off both N5 and N4 and allow OFFTM  
pin to initiate its positive ramp as a result of I6  
charging the capacitors C7 (Figure 1) and C2  
(Figure 2) connected to the OFFTM pin.  
Restart Operation  
COMP2 output goes high whenever an  
overcurrent or a short circuit condition is  
detected. The inverting input to COMP2 is  
connected to the VCL output pin which is  
internally set at approximately 120mV. As  
shown in Figure 1, one side of R4 is in series  
with the source of Q1, the drain output of which  
drives the load connected to J8. The return  
side of R4 is connected to -Vin through J1. For  
R4 = 0.02, Q1 source currents greater than  
6A will turn on COMP2 and will be considered  
either an overcurrent or short circuit event.  
The IXHQ100 will automatically attempt to  
restart once a disconnection and reconnection  
is detected. Either PUR or COMP4 going high  
will reset SRFF1 during normal operation of  
the IXHQ100 (fig 2). Resetting SRFF1 turns off  
N4 and N5, and the OFFTM pin ramps up in  
response. During this ramp, as long as VOFFTM  
islessthanVrf=~4.5V, COMP1willkeepN3on  
andC1(Figure2)andC8(Figure1)discharged.  
After Toff-delay, VOFFTM is at Vrf, COMP1 output  
then goes low, turning off N3. Now the SLOPE  
pin is free to ramp up as a result of I5 charging  
C1 (Figure 2) and C8 (Figure 1). The two unity-  
gainbuffers, OA4andOA5, reflectVSLOPE atthe  
GATE output pin during this positive ramp. As  
soon as VGATE overcomes the VQ1th, normal  
operation is resumed.  
COMP3 goes high whenever the voltage at  
OUTsns with respect to AGND becomes less  
than 0.1*VCL(approximately 12mV). This can  
onlyoccurifeitherthecurrentdrawnbythedriven  
load is less than 600mA (12mV/.02) or -VIN is  
disconnected.ThisAuto-Disconnecttechnique  
automatically detects load disconnections  
withoutneedingadditionalsensors.  
Fault Operation  
When the output load current is such that the  
voltage drop across the current sense resistor  
between the SOURCE pin and the AGND  
exceeds VCL (internally set to ~120 mv), the  
GATEoutputisdrivenlowtoturnofftheexternal  
Power MOSFET connected between the load  
and -Vin. An external capacitor connected  
betweenOFFTMpinandAGNDpindetermines  
theofftimeToff-delay. IXHQ100willrestarttheturn  
on sequence of the external Power MOSFET  
with a load voltage slope determined by the  
size of the external capacitor that is connected  
to the SLOPE pin.  
Thus the SRFF1 will reset when one of the  
following events occur:  
1. Loss of AGND or -Vin.  
2. Overcurrent or short circuit.  
3. Auto-Disconnection  
A valid S input into SRFF1 will immediately  
driveitsoutput, Q1, tohighandwillturnonboth  
N5andN4. N5,anopendrainoutput,willresult  
in RSTout being driven low. A current limiting  
resistor, R1, in series with a 4N35 LED  
connected to VDD (fig 1) can be used to  
generate an isolated reset pulse. Turning on  
N4 will discharge C7 and the internal 10pF  
capacitor(fig2).AssoonasVOFFTM dropsbelow  
Short Circuit Prevention  
When the IXHQ100 detects a short in the load,  
a restart is automatically initiated. The GOUT  
drops to zero and waits one Toff-delay before  
SLOPErampsup. Asbefore,normaloperation  
is resumed.  
V
=~0.9V, COMP4 in Figure 2 will turn on  
DROP  
through NOR1 and NOR2, and resets SRFF1  
8
IXHQ 100PI  
IXHQ 100SI  
Package Outlines: 16 PIN TSSOP  
Package Outlines: 16 PIN PDIP  
Ordering Information  
Part Number Package Type Grade  
IXHQ 100PI  
IXHQ 100SI  
16 PIN PDIP  
16 PIN TSSOP Industrial  
Industrial  
IXYS Corporation  
IXYS Semiconducotr GmbH  
Edisonstrasse15 ; D-68623; Lampertheim  
Tel: +49-6206-503-0; Fax: +49-6206-503627  
e-mail: marcom@ixys.de  
3054 Bassett St; Santa Clara, CA 95054  
Tel: 408-982-0700; Fax: 408-496-0670  
e-mail: sales@ixys.com  
9
厂商 型号 描述 页数 下载

IXYS

IXHQ100PI 负电压热插拔控制器,有源电力滤波器[ Negative Voltage Hot Swap Controller with Active Power Filter ] 9 页

IXYS

IXHQ100SI 负电压热插拔控制器,有源电力滤波器[ Negative Voltage Hot Swap Controller with Active Power Filter ] 9 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.191250s