找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QW030A1

型号:

QW030A1

描述:

模拟IC\n[ Analog IC ]

品牌:

ETC[ ETC ]

页数:

16 页

PDF大小:

369 K

Advance Data Sheet  
September 2000  
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Features  
Small size: 36.8 mm x 57.9 mm x 12.7 mm  
(1.45 in. x 2.28 in. x 0.50 in.)  
High power density  
High efficiency: 86% typical  
Low output noise  
Constant frequency  
Industry-standard pinout  
Metal case  
2:1 input voltage range  
Overvoltage and overcurrent protection  
Remote on/off  
The QC/QW030-Series Power Modules use advanced, sur-  
face-mount technology and deliver high-quality, efficient, and  
compact dc-dc conversion.  
Remote sense  
Adjustable output voltage  
ISO* 9001 and ISO14001 Certified manufacturing  
facilities  
Applications  
UL1950 Recognized, CSAC22.2 No. 950-95  
Distributed power architectures  
Workstations  
Certified, VDE§ 0805 (EN60950, IEC950) Licensed  
CE mark meets 73/23/EEC and 93/68/EEC  
directives**  
Computer equipment  
Communications equipment  
Optical transport equipment  
* ISO is a registered trademark of the International Organization  
for Standardization.  
UL is a registered trademark of Underwriters Laboratories, Inc.  
CSA is a registered trademark of Canadian Standards Assn.  
§ VDE is a trademark of Verband Deutscher Elektrotechniker e.V.  
**This product is intended for integration into end-use equipment.  
All the required procedures for CE marking of end-use equip-  
ment should be followed. (The CE mark is placed on selected  
products.)  
Options  
Heat sinks available for extended operation  
Choice of remote on/off logic configurations  
Choice of two pin lengths  
Description  
The QC/QW030-Series Power Modules are dc-dc converters that operate over an input voltage range of  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc and provide a precisely regulated dc output. The outputs are fully  
isolated from the inputs, allowing versatile polarity configurations and grounding connections. The modules  
have maximum power ratings of 30 W at a typical full-load efficiency of up to 86%.  
These encapsulated modules offer a metal case for optimum thermal performance. Threaded-through holes are  
provided to allow easy mounting or addition of a heat sink for high-temperature applications.The standard feature  
set includes remote sensing, output trim, and remote on/off for convenient flexibility in distributed power  
applications.  
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are  
absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in  
excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for  
extended periods can adversely affect device reliability.  
Parameter  
Device  
Symbol  
Min  
Max  
Unit  
Input Voltage:  
Continuous  
QC030x  
QW030x  
QW030x  
VI  
VI  
VI, trans  
50  
80  
100  
Vdc  
Vdc  
V
Transient (100 ms)  
Operating Case Temperature  
All  
TC  
–40  
105*  
°C  
(See Thermal Considerations section.)  
Storage Temperature  
I/O Isolation Voltage  
All  
All  
Tstg  
–55  
125  
°C  
1500  
Vdc  
* Maximum case temperature varies based on power dissipation. See power derating curves for details.  
Electrical Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions.  
Table 1. Input Specifications  
Parameter  
Operating Input Voltage:  
Device Symbol  
Min  
Typ  
Max  
Unit  
QC030x  
QW030x  
All  
All  
VI  
VI  
18  
36  
24  
48  
36  
75  
Vdc  
Vdc  
Maximum Input Current  
(VI = 0 V to 75 V; IO = IO, max):  
QC030x  
All  
All  
All  
II, max  
II, max  
II, max  
3.5†  
1.7†  
2.2†  
A
A
A
QW030x (VO 5 V)  
QW030x (VO > 5 V)  
Inrush Transient  
All  
All  
i2t  
5†  
0.2†  
A2s  
Input Reflected-ripple Current, Peak-to-peak  
(5 Hz to 20 MHz, 12 µH source impedance;  
see Test Configurations section.)  
II  
mAp-p  
Input Ripple Rejection (120 Hz)  
All  
50†  
dB  
† Engineering estimate.  
Fusing Considerations  
CAUTION:This power module is not internally fused. An input line fuse must always be used.  
This encapsulated power module can be used in a wide variety of applications, ranging from simple stand-alone  
operation to an integrated part of a sophisticated power architecture. To preserve maximum flexibility, internal  
fusing is not included; however, to achieve maximum safety and system protection, always use an input line fuse.  
The safety agencies require a normal-blow fuse with a maximum rating of 5 A (see Safety Considerations section).  
Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same  
type of fuse with a lower rating can be used. Refer to the fuse manufacturer’s data for further information.  
2
Lucent Technologies Inc.  
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
Electrical Specifications (continued)  
Table 2. Output Specifications  
Device  
Suffix  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage Set Point  
(VI = 48 V; IO = IO, max; TC = 25 °C)  
F
A
B
C
VO, set  
VO, set  
VO, set  
VO, set  
3.23  
4.92  
11.80  
14.55  
3.3  
5.0  
3.37  
5.12  
12.30  
15.48  
Vdc  
Vdc  
Vdc  
Vdc  
Output Voltage  
F
A
B
C
VO  
VO  
VO  
VO  
3.18  
4.86  
11.60  
14.25  
3.42  
5.18  
12.45  
15.75  
Vdc  
Vdc  
Vdc  
Vdc  
(Over all operating input voltage, resistive  
load, and temperature conditions until end of  
life. See Test Configurations section.)  
Output Regulation:  
Line (VI = 36 V to 75 V)  
A, F  
B, C  
A, F  
B
C
A, F  
B
1
2
2
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
Load (IO = IO, min to IO, max)  
8
10  
15  
40  
65  
Temperature (TC = –30 °C to +100 °C)  
C
Output Ripple and Noise Voltage  
(See Test Configurations section.):  
Measured across one 4.7 µF ceramic  
capacitor:  
RMS  
F
A
F
A
15  
10  
40  
30  
mVrms  
mVrms  
mVp-p  
mVp-p  
Peak-to-peak (5 Hz to 20 MHz)  
Measured across one 2.2 µF ceramic  
capacitor:  
RMS  
B, C  
B
C
15  
40  
50  
mVrms  
mVp-p  
mVp-p  
Peak-to-peak (5 Hz to 20 MHz)  
External Load Capacitance  
A, F  
B, C  
0
0
1000*  
470  
µF  
µF  
Output Current  
(At IO < IO, min, the modules may exceed output  
ripple specifications.)  
F
A
B
C
IO  
IO  
IO  
IO  
0.45*  
0.30*  
0.26*  
0.26*  
6.50  
6.00  
3.00  
2.66  
A
A
A
A
Output Current-limit Inception  
(VO = 90% of VO, set)  
F
A
B
C
IO  
IO  
IO  
IO  
7.5  
7.0  
3.7  
3.3  
A
A
A
A
Output Short-circuit Current (VO = 0.25 V)  
F
A
B
C
IO  
IO  
IO  
IO  
11.5  
9.5  
5.5  
4.5  
A
A
A
A
* Engineering estimate.  
Lucent Technologies Inc.  
3
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
Electrical Specifications (continued)  
Table 2. Output Specifications (continued)  
Device  
Suffix  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Efficiency (VI = 48 V; IO = IO, max; TC = 25 °C)  
F
A
B, C  
η
η
η
83  
86  
89  
%
%
%
Switching Frequency  
All  
300  
kHz  
Dynamic Response  
(IO/t = 1 A/10 µs, VI = 48 V, TC = 25 °C):  
Load Change from IO = 50% to 75% of IO, max:  
Peak Deviation  
A, C, F  
B
2.0  
2.5  
5.0  
3.0  
%VO, set  
%VO, set  
ms  
Settling Time (VO < 10% of peak deviation) B, C, F  
A
ms  
Load Change from IO = 50% to 25% of IO, max:  
Peak Deviation  
A, C, F  
B
2.0  
2.5  
5.0  
3.0  
%VO, set  
%VO, set  
ms  
Settling Time (VO < 10% of peak deviation) B, C, F  
A
ms  
* Engineering estimate.  
Table 3. Isolation Specifications  
Parameter  
Isolation Capacitance (engineering estimate)  
Isolation Resistance  
Device  
All  
Min  
Typ  
600  
Max  
Unit  
pF  
All  
10  
MΩ  
Table 4. General Specifications  
Parameter  
Device  
Min  
Typ  
Max  
Unit  
Calculated MTBF  
All  
5,000,000  
hours  
(IO = 80% of IO, max; TC = 40 °C)  
Weight  
All  
75 (2.7)  
g (oz.)  
4
Lucent Technologies Inc.  
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
Feature Specifications  
Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature  
conditions. See Feature Descriptions section of this data sheet for additional information.  
Device  
Suffix  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Remote On/Off Signal Interface  
(VI = VI, min to VI, max; open collector or equivalent  
compatible; signal referenced to VI(–) terminal.):  
Negative Logic: Device Code Suffix “1”:  
Logic Low—Module On  
Logic High—Module Off  
Positive Logic: If Device Code Suffix “1” Is Not  
Specified:  
Logic Low—Module Off  
Logic High—Module On  
Module Specifications:  
On/Off Current—Logic Low  
On/Off Voltage:  
All  
Ion/off  
1.0  
mA  
Logic Low  
Logic High (Ion/off = 0 mA)  
All  
All  
Von/off  
Von/off  
–0.7  
1.2  
15  
V
V
Open Collector Switch Specifications:  
Leakage Current During Logic High  
(Von/off = 15 V)  
All  
All  
Ion/off  
50  
µA  
V
Output Low Voltage During Logic Low  
(Ion/off = 1 mA)  
Von/off  
1.2  
Turn-on Delay and Rise Times  
(at 80% of IO, max; TA = 25 °C):  
Case 1: On/Off Input Is Set for Logic High and  
then Input Power Is Applied (delay from point  
at which VI = VI, min until VO = 10% of VO, nom).  
Case 2: Input Power Is Applied for at Least One  
Second, and Then the On/Off Input Is Set to  
Logic High (delay from point at which Von/off =  
0.9 V until VO = 10% of VO, nom).  
All  
All  
Tdelay  
Tdelay  
8
1
ms  
ms  
Output Voltage Rise Time (time for VO to rise  
from 10% of VO, nom to 90% of VO, nom)  
Output Voltage Overshoot (at 80% of IO, max;  
TA = 25 °C)  
All  
All  
Trise  
1
5*  
ms  
%
Output Voltage Adjustment  
(See Feature Descriptions section.):  
Output Voltage Remote-sense Range  
Output Voltage Set-point Adjustment Range  
(trim)  
All  
A, F  
B, C  
95  
90  
0.5  
110  
110  
V
%VO, nom  
%VO, nom  
Output Overvoltage Protection (clamp)  
F
A
B
C
VO, ovp  
VO, ovp  
VO, ovp  
VO, ovp  
3.8*  
5.5*  
13.2*  
16.5*  
4.9*  
7.0*  
21.0*  
24.0*  
V
V
V
V
* Engineering estimate.  
Lucent Technologies Inc.  
5
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
Feature Specifications (continued)  
Device  
Suffix  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Overtemperature Protection  
(VI = 75 V, see Figure 8.):  
IO = 6.5 A  
F
A
B
C
Tcase  
Tcase  
Tcase  
Tcase  
105  
105  
110  
110  
°C  
°C  
°C  
°C  
IO = 6 A  
IO = 3 A  
IO = 2.66 A  
Undervoltage Lockout:  
QC030x  
All  
All  
14  
27  
V
V
QW030x  
* Engineering estimate.  
Test Configurations  
SENSE(+)  
CONTACT AND  
DISTRIBUTION LOSSES  
V
I
I
(+)  
(–)  
VO(+)  
TO OSCILLOSCOPE  
CURRENT  
PROBE  
I
O
I
I
LTEST  
LOAD  
SUPPLY  
VI(+)  
12 µH  
S 220 µF  
V
VO(–)  
C
CONTACT  
RESISTANCE  
ESR < 0.1  
@ 20 °C, 100 kHz  
33 µF  
ESR < 0.7 Ω  
@ 100 kHz  
BATTERY  
SENSE(–)  
8-749(C)  
V
I
(–)  
Note: All measurements are taken at the module terminals. When  
socketing, place Kelvin connections at module terminals to  
avoid measurement errors due to socket contact resistance.  
8-203(C).l  
Note: Measure input reflected-ripple current with a simulated source  
inductance (LTEST) of 12 µH. Capacitor CS offsets possible bat-  
tery impedance. Measure current as shown above.  
[VO(+) VO(–)]IO  
[VI(+) – VI(–)]II  
η =  
× 100 %  
----------------------------------------------  
Figure 1. QC/QW030-Series Input Reflected-Ripple  
Test Setup  
Figure 3. QC/QW030-Series Output Voltage and  
Efficiency Measurement Test Setup  
COPPER STRIP  
Design Considerations  
Grounding Considerations  
V
V
O
O
(+)  
(–)  
RESISTIVE  
LOAD  
SEE NOTE  
SCOPE  
For the QC modules, the case is internally connected  
to the VI(–) pin. For the QW modules, the case is inter-  
nally connected to the VI(+) pin.  
8-513(C).s  
Note: Use the capacitor(s) referenced in the Output Ripple and Noise  
Voltage specifications in the Output Specifications table. Scope  
measurement should be made using a BNC socket. Position  
the load between 51 mm and 76 mm (2 in. and 3 in.) from the  
module.  
Figure 2. QC/QW030-Series Peak-to-Peak Output  
Noise Measurement Test Setup  
6
Lucent Technologies Inc.  
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
Another SELV reliability test is conducted on the  
whole system, as required by the safety agencies, on  
the combination of supply source and the subject  
module to verify that under a single fault, hazardous  
voltages do not appear at the module’s output.  
Design Considerations (continued)  
Input Source Impedance  
The power module should be connected to a low  
ac-impedance input source. Highly inductive source  
impedances can affect the stability of the power mod-  
ule. If the input source inductance exceeds 4 µH, a  
33 µF electrolytic capacitor (ESR < 0.7 at 100 kHz)  
mounted close to the power module helps ensure sta-  
bility of the unit.  
Note: Do not ground either of the input pins of the  
module without grounding one of the output pins.  
This may allow a non-SELV voltage to appear  
between the output pin and ground.  
The power module has extra-low voltage (ELV) outputs  
when all inputs are ELV.  
The input to these units is to be provided with a maxi-  
mum 5 A normal-blow fuse in the ungrounded lead.  
Safety Considerations  
QC Modules  
Feature Descriptions  
Overcurrent Protection  
For safety-agency approval of the system in which the  
power module is used, the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standard,  
i.e., UL 1950, CSA C22.2 No. 950-95, and VDE 0805  
(EN60950, IEC950).  
To provide protection in a fault (output overload) condi-  
tion, the unit is equipped with internal current-limiting  
circuitry and can endure current limiting for an unlim-  
ited duration. At the point of current-limit inception, the  
unit shifts from voltage control to current control. If the  
output voltage is pulled very low during a severe fault,  
the current-limit circuit can exhibit either foldback or  
tailout characteristics (output-current decrease or  
increase). The unit operates normally once the output  
current is brought back into its specified range.  
For the converter output to be considered meeting the  
requirements of safety extra-low voltage (SELV), the  
input must meet SELV requirements.  
The power module has extra-low voltage (ELV) outputs  
when all inputs are ELV.  
The input to these units is to be provided with a maxi-  
mum 5 A normal-blow fuse in the ungrounded lead.  
Remote On/Off  
QW Modules  
Two remote on/off options are available. Positive logic  
remote on/off turns the module on during a logic-high  
voltage on the remote ON/OFF pin, and off during a  
logic low. Negative logic remote on/off, device code suf-  
fix “1,turns the module off during logic-high voltage  
and on during a logic low.  
For safety-agency approval of the system in which the  
power module is used, the power module must be  
installed in compliance with the spacing and separation  
requirements of the end-use safety agency standard,  
i.e., UL1950, CSA C22.2 No. 950-95, and VDE 0805  
(EN60950, IEC950).  
To turn the power module on and off, the user must  
supply a switch to control the voltage between the  
on/off terminal and the VI(–) terminal (Von/off). The  
switch may be an open collector or equivalent (see  
Figure 4). A logic low is Von/off = –0.7 V to 1.2 V. The  
maximum Ion/off during a logic low is 1 mA. The switch  
should maintain a logic-low voltage while sinking 1 mA.  
If the input source is non-SELV (ELV or a hazardous  
voltage greater than 60 Vdc and less than or equal to  
75 Vdc), for the module’s output to be considered meet-  
ing the requirements of safety extra-low voltage  
(SELV), all of the following must be true:  
The input source is to be provided with reinforced  
insulation from any hazardous voltages, including the  
ac mains.  
During a logic high, the maximum Von/off generated by  
the power module is 15 V. The maximum allowable  
leakage current of the switch at Von/off = 15 V is 50 µA.  
One VI pin and one VO pin are to be grounded, or  
both the input and output pins are to be kept floating.  
The input pins of the module are not operator acces-  
sible.  
7
Lucent Technologies Inc.  
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
The amount of power delivered by the module is  
Feature Descriptions (continued)  
Remote On/Off (continued)  
defined as the voltage at the output terminals multiplied  
by the output current. When using remote sense and  
trim, the output voltage of the module can be  
increased, which at the same output current would  
increase the power output of the module. Care should  
be taken to ensure that the maximum output power of  
the module remains at or below the maximum rated  
power.  
If not using the remote on/off feature, do one of the  
following:  
For positive logic, leave the ON/OFF pin open.  
For negative logic, short the ON/OFF pin to VI(–).  
VI(+)  
VI(–)  
SENSE(+)  
SENSE(–)  
V
I
I
(+)  
(–)  
V
O
(+)  
(–)  
Von/off  
I
O
SUPPLY  
LOAD  
I
I
+
V
O
V
REMOTE  
ON/OFF  
CONTACT  
RESISTANCE  
CONTACT AND  
DISTRIBUTION LOSSES  
Ion/off  
8-651(C).m  
Figure 5. QC/QW030-Series Effective Circuit  
Configuration for Single-Module Remote-  
Sense Operation  
8-758(C).a  
Figure 4. QC/QW030-Series Remote On/Off  
Implementation  
Output Voltage Set-Point Adjustment  
(Trim)  
Remote Sense  
Output voltage trim allows the user to increase or  
decrease the output voltage set point of a module.This  
is accomplished by connecting an external resistor  
between the TRIM pin and either the SENSE(+) or  
SENSE(–) pins. The trim resistor should be positioned  
close to the module.  
Remote sense minimizes the effects of distribution  
losses by regulating the voltage at the remote-sense  
connections. The voltage between the remote-sense  
pins and the output terminals must not exceed the out-  
put voltage sense range given in the Feature Specifica-  
tions table, e.g., on the QW030A:  
If not using the trim feature, leave the TRIM pin open.  
[VO(+) – VO(–)] – [SENSE(+) – SENSE(–)] 0.5 V  
With an external resistor between the TRIM and  
SENSE(+) pins (Radj-down), the output voltage set point  
(VO, adj) decreases (see Figure 6). The following equa-  
tion determines the required external-resistor value to  
obtain a change in output voltage from VO, nom to VO, adj.  
The values of G, H, and L are shown in Table 5.  
The voltage between the VO(+) and VO(–) terminals  
must not exceed the minimum output overvoltage pro-  
tection value shown in the Feature Specifications table.  
This limit includes any increase in voltage due to  
remote-sense compensation and output voltage set-  
point adjustment (trim). See Figure 5.  
(VO, adj L)G  
(VO, nom VO, adj  
If not using the remote-sense feature to regulate the  
output at the point of load, then connect SENSE(+) to  
VO(+) and SENSE(–) to VO(–) at the module.  
Radj-down  
=
H Ω  
---------------------------------------  
)
Although the output voltage can be increased by both  
the remote sense and by the trim, the maximum  
increase for the output voltage is not the sum of both.  
The maximum increase is the larger of either the  
remote sense or the trim. Consult your Lucent Technol-  
ogies Account Manager or Application Engineer if you  
need to increase the output voltage more than the  
above limitation.  
The QC/QW030 modules have a fixed current-limit set  
point. As the output voltage is adjusted down, the avail-  
able output power is reduced.  
With an external resistor connected between the TRIM  
and SENSE(–) pins (Radj-up), the output voltage set  
point (VO, adj) increases (see Figure 7).  
8
Lucent Technologies Inc.  
 
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
Feature Descriptions (continued)  
VI  
(+)  
VO(+)  
Output Voltage Set-Point Adjustment  
ON/OFF SENSE(+)  
(Trim) (continued)  
R
adj-down  
RLOAD  
CASE  
(–)  
TRIM  
The following equation determines the required exter-  
nal-resistor value to obtain a change in output voltage  
from VO, nom to VO, adj. The values of G, H, K, and L are  
shown in Table 5.  
V
I
SENSE(–)  
VO(–)  
8-715(C).i  
GL  
----------------------------------------  
Figure 6. QC/QW030-Series Circuit Configuration  
to Decrease Output Voltage  
Radj-up  
=
H Ω  
[(VO, adj L) K]  
Table 5. Values for Trim Equations  
Device  
V
I
(+)  
VO(+)  
Vo, nom  
G
H
K
L
Suffix  
ON/OFF SENSE(+)  
F
A
B
C
3.3  
5
5110  
5110  
3010  
3010  
2.06  
2.5  
1.24  
2.5  
2.5  
2.5  
CASE  
(–)  
TRIM  
RLOAD  
Radj-up  
V
I
SENSE(–)  
12  
15  
10,000 3010  
10,000 3010  
9.5  
12.5  
VO(–)  
8-748(C).f  
The voltage between the VO(+) and VO(–) terminals  
must not exceed the minimum output overvoltage pro-  
tection value shown in the Feature Specifications table.  
This limit includes any increase in voltage due to  
remote-sense compensation and output voltage set-  
point adjustment (trim). See Figure 5.  
Figure 7. QC/QW030-Series Circuit Configuration  
to Increase Output Voltage  
Output Overvoltage Protection  
Although the output voltage can be increased by both  
the remote sense and by the trim, the maximum  
increase for the output voltage is not the sum of both.  
The maximum increase is the larger of either the  
remote sense or the trim. Consult your Lucent Technol-  
ogies Account Manager or Application Engineer if the  
output voltage needs to be increased more than the  
above limitation.  
The output overvoltage clamp consists of control  
circuitry, independent of the primary regulation loop,  
that monitors the voltage on the output terminals. This  
control loop has a higher voltage set point than the  
primary loop (see the Feature Specifications table). In  
a fault condition, the overvoltage clamp ensures that  
the output voltage does not exceed VO, clamp, max. This  
provides a redundant voltage-control that reduces the  
risk of output overvoltage.  
The amount of power delivered by the module is  
defined as the voltage at the output terminals multiplied  
by the output current. When using remote sense and  
trim, the output voltage of the module can be  
increased, which at the same output current would  
increase the power output of the module. Care should  
be taken to ensure that the maximum output power of  
the module remains at or below the maximum rated  
power.  
Overtemperature Protection  
These modules feature overtemperature protection to  
safeguard the modules against thermal damage.  
When the temperature exceeds the overtemperature  
threshold given in the feature specifications table, the  
module will limit the available output current in order to  
help protect against thermal damage. The overcurrent  
inception point will gradually move back to its original  
level as the module is cooled below the overtempera-  
ture threshold.  
Lucent Technologies Inc.  
9
 
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
Heat Transfer Without Heat Sinks  
Feature Descriptions (continued)  
Increasing airflow over the module enhances the heat  
transfer via convection. Figures 9 and 10 show the  
maximum power that can be dissipated by the module  
without exceeding the maximum case temperature ver-  
sus local ambient temperature (TA) for natural convec-  
tion through 3 m/s (600 ft./min.).  
Input Undervoltage Lockout  
At input voltages below the input undervoltage lockout  
limit, the module operation is disabled. The module will  
begin to operate at an input voltage between the under-  
voltage lockout limit and the minimum operating input  
voltage.  
Systems in which these power modules may be used  
typically generate natural convection airflow rates of  
0.3 ms–1 (60 ft./min.) due to other heat-dissipating  
components in the system. Therefore, the natural con-  
vection condition represents airflow rates of up to  
0.3 ms–1 (60 ft./min.). Use of Figure 9 is shown in the  
following example.  
Thermal Considerations  
Introduction  
The power modules operate in a variety of thermal  
environments; however, sufficient cooling should be  
provided to help ensure reliable operation of the unit.  
Heat-dissipating components inside the unit are ther-  
mally coupled to the case. Heat is removed by conduc-  
tion, convection, and radiation to the surrounding  
environment. Proper cooling can be verified by mea-  
suring the case temperature. The case temperature  
should be measured at the position indicated in  
Figure 8.  
Example  
What is the minimum airflow necessary for a QW030A  
operating at VI = 48 V, an output current of 3.5 A, and a  
maximum ambient temperature of 89 °C?  
Solution  
Given: VI = 48 V  
IO = 3.5 A  
TA = 89 °C  
33 (1.30)  
Determine PD (Use Figure 12.):  
PD = 3 W  
14  
(0.55)  
VO(+)  
(+)SENSE  
TRIM  
(–)SENSE  
VO(–)  
VI(+)  
Determine airflow (v) (Use Figure 9.):  
v = 1.0 m/s (200 ft./min.)  
ON/OFF  
VI(–)  
7
MAX CASE TEMP.  
6
8-2104(C).a  
5
4
3
Note: Top view, pin locations are for reference only.  
Measurements shown in millimeters and (inches).  
Figure 8. QC/QW030-Series Case Temperature  
Measurement Location  
NATURAL CONVECTION  
2
1.0 ms-1 (200 ft./min.)  
2.0 ms-1 (400 ft./min.)  
1
3.0 ms-1 (600 ft./min.)  
The temperature at this location should not exceed  
105 °C. The output power of the module should not  
exceed the rated power for the module as listed in the  
Ordering Information table.  
0
40  
50  
60  
70  
80  
90  
100 110  
MAX AMBIENT TEMPERATURE, TA (°C)  
8-3406(F)  
Although the maximum case temperature of the power  
modules is 105 °C, you can limit this temperature to a  
lower value for extremely high reliability.  
Figure 9. QW030A, F Forced Convection Power  
Derating with No Heat Sink; Either  
Orientation  
10  
Lucent Technologies Inc.  
 
 
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
Thermal Considerations (continued)  
6
5
Heat Transfer Without Heat Sinks (continued)  
4
3
2
7.0  
MAX CASE TEMPERATURE  
6.0  
V
V
V
I
I
I
= 75 V  
= 48 V  
= 36 V  
5.0  
NATURAL  
CONVECTION  
4.0  
3.0  
2.0  
1
0
1.0 ms –1 (200 ft./min.)  
2.0 ms –1 (400 ft./min.)  
3.0 ms –1 (600 ft./min.)  
0.3  
1.3  
2.3  
3.3  
4.3  
(A)  
5.3  
6.3  
OUTPUT CURRENT, I  
O
8-9439(C)  
1.0  
0.0  
Figure 12. QW030A Typical Power Dissipation vs.  
Output Current at TA = 25 °C  
40  
50  
60  
70  
80  
90  
100 110  
MAX AMBIENT TEMPERATURE, T  
A
(°C)  
8-3366(C).a  
Note: Derating chart is estimated on information available at the time  
of publishing. Contact your Lucent Technologies Account Man-  
ager or Application Engineer for updated information.  
6
5
Figure 10. QW030B, C Forced Convection Power  
Derating with No Heat Sink; Either  
Orientation  
V
V
V
I
I
= 75 V  
= 48 V  
= 36 V  
4
3
2
I
6
5
1
0
4
3
0.253 0.753  
1.253  
1.753  
2.253  
(A)  
2.753 3.253  
OUTPUT CURRENT, I  
O
8-3376(C)  
V
V
V
I
I
I
= 75 V  
= 48 V  
= 36 V  
2
Figure 13. QW030B Typical Power Dissipation vs.  
Output Current at TA = 25 °C  
1
0
0.3  
1.3  
2.3  
3.3  
4.3  
5.3  
6.3  
7.3  
OUTPUT CURRENT, I  
O
(A)  
8-9439(C).a  
Figure 11. QW030F Typical Power Dissipation vs.  
Output Current at TA = 25 °C  
Lucent Technologies Inc.  
11  
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
These measured resistances are from heat transfer  
from the sides and bottom of the module as well as the  
top side with the attached heat sink; therefore, the  
case-to-ambient thermal resistances shown are gener-  
ally lower than the resistance of the heat sink by itself.  
The module used to collect the data in the case-to-  
ambient thermal resistance curves had a thermal-con-  
ductive dry pad between the case and the heat sink to  
minimize contact resistance.  
Thermal Considerations (continued)  
Heat Transfer Without Heat Sinks (continued)  
6
5
4
3
2
Custom Heat Sinks  
A more detailed model can be used to determine the  
required thermal resistance of a heat sink to provide  
necessary cooling. The total module resistance can be  
separated into a resistance from case-to-sink (θcs) and  
sink-to-ambient (θsa) as shown in Figure 15.  
V
V
V
I
= 75 V  
= 48 V  
= 36 V  
I
I
1
0
0.27  
0.77  
1.27  
1.77  
2.27  
2.77  
OUTPUT CURRENT, I  
O
(A)  
TC  
TS  
TA  
8-3287(C)  
PD  
cs  
sa  
Figure 14. QW030C Typical Power Dissipation vs.  
Output Current at TA = 25 °C  
8-1304(C)  
Figure 15. QC/QW030-Series Resistance from  
Case-to-Sink and Sink-to-Ambient  
Heat Transfer with Heat Sinks  
The power modules have through-threaded, M3 x 0.5  
mounting holes, which enable heat sinks or cold plates  
to attach to the module. The mounting torque must not  
exceed 0.56 N-m (5 in.-lb.). For a screw attachment  
from the pin side, the recommended hole size on the  
customer’s PWB around the mounting holes is 0.130  
± 0.005 inches. The mounting torque from the pin side  
must not exceed 0.25 N-m (2.2 in.-lbs.).  
For a managed interface using thermal grease or foils,  
a value of θcs = 0.1 °C/W to 0.3 °C/W is typical. The  
solution for heat sink resistance is:  
(TC TA)  
θsa =  
θcs  
------------------------  
PD  
This equation assumes that all dissipated power must  
be shed by the heat sink. Depending on the user-  
defined application environment, a more accurate  
model, including heat transfer from the sides and bot-  
tom of the module, can be used.This equation provides  
a conservative estimate for such instances.  
Thermal derating with heat sinks is expressed by using  
the overall thermal resistance of the module.Total mod-  
ule thermal resistance (θca) is defined as the maximum  
case temperature rise (TC, max) divided by the module  
power dissipation (PD):  
(TC TA)  
------------------------  
PD  
TC, max  
--------------------  
PD  
Layout Considerations  
θca =  
=
Copper paths must not be routed beneath the power  
module standoffs. For additional layout guidelines, refer  
to the FLTR100V10 or FLTR100V20 data sheet.  
The location to measure case temperature (TC) is  
shown in Figure 8. Consult your Lucent Technologies  
Account Manager or Application Engineer for case-to-  
ambient thermal resistance vs. airflow for various heat  
sink configurations, heights, and orientations. Longitu-  
dinal orientation is defined as the long axis of the mod-  
ule that is parallel to the airflow direction, whereas in  
the transverse orientation, the long axis is perpendicu-  
lar to the airflow. These curves are obtained by experi-  
mental testing of heat sinks, which are offered in the  
product catalog.  
12  
Lucent Technologies Inc.  
 
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
Outline Diagram  
Dimensions are in millimeters and (inches).  
Tolerances: x.x mm ± 0.5 mm (x.xx in. ± 0.02 in.)  
x.xx mm ± 0.25 mm (x.xxx in. ± 0.010 in.)  
Top View  
SIDE LABEL*  
36.8  
(1.45)  
57.9  
(2.28)  
Side View  
12.7  
(0.50)  
0.51  
(0.020)  
1.02 (0.040) DIA  
SOLDER-PLATED  
BRASS, ALL PLACES  
6.1 (0.24), 4 PLACES  
4.1 (0.16) MIN,  
ALL PLACES  
Bottom View  
3.6  
(0.14)  
50.80  
(2.000)  
5.3  
(0.21)  
10.9  
(0.43)  
3.81  
(0.150)  
11.43  
(0.450)  
VO(–)  
VI(–)  
7.62  
(0.300)  
– SENSE  
TRIM  
15.24  
(0.600)  
15.24  
(0.600)  
ON/OFF  
26.16  
+ SENSE  
VO(+)  
(1.030)  
VI(+)  
7.62  
(0.300)  
MOUNTING INSERTS  
M3 x 0.5 THROUGH,  
2 PLACES  
47.2  
(1.86)  
5.3  
(0.21)  
8-1769(F).c  
* Side label includes Lucent name, product designation, safety agency markings, input/output voltage and current ratings, and bar code.  
Lucent Technologies Inc.  
13  
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
Recommended Hole Pattern  
Component-side footprint.  
Dimensions are in millimeters and (inches).  
5.3  
(0.21)  
47.2  
(1.86)  
7.62  
(0.300)  
VI(+)  
26.16  
(1.030)  
VO(+)  
+ SENSE  
15.24  
(0.600)  
15.24  
TRIM  
ON/OFF  
VI(–)  
7.62  
(0.600)  
– SENSE  
(0.300)  
VO(–)  
11.43  
(0.450)  
3.81  
(0.150)  
10.9  
(0.43)  
50.80  
(2.000)  
5.3  
(0.21)  
MOUNTING INSERTS  
M3 x 0.5 THROUGH,  
2 PLACES  
3.6  
(0.14)  
8-1769(F).c  
Ordering Information  
Optional features may be ordered using the device code suffixes shown below. The feature suffixes are shown in  
numerically descending order. Please contact your Lucent Technologies Account Manager or Application Engineer  
for pricing and availability.  
Table 6. Device Codes  
Input  
Voltage  
Output  
Voltage  
Output  
Power  
Output  
Current  
Remote On/  
Off Logic  
Device  
Code  
Comcode  
48 Vdc  
48 Vdc  
48 Vdc  
48 Vdc  
48 Vdc  
48 Vdc  
48 Vdc  
48 Vdc  
3.3 Vdc  
5 Vdc  
21.5 W  
30 W  
36 W  
40 W  
21.5 W  
30 W  
36 W  
40 W  
6.5 A  
6 A  
Negative  
Negative  
Negative  
Negative  
Positive  
Positive  
Positive  
Positive  
QW030F1  
QW030A1  
QW030B1  
QW030C1  
QW030F  
QW030A  
QW030B  
QW030C  
108729807  
108748344  
108846171  
108729799  
TBD  
12 Vdc  
15 Vdc  
3.3 Vdc  
5 Vdc  
3 A  
2.66 A  
6.5 A  
6 A  
108710765  
TBD  
12 Vdc  
15 Vdc  
3 A  
2.66 A  
TBD  
Table 7. Device Options  
Option  
Device Code Suffix  
Short pins: 2.79 mm ± 0.25 mm  
8
(0.110 in. ± 0.010 in.)  
Short pins: 3.68 mm ± 0.25 mm  
(0.145 in. ± 0.010 in.)  
6
14  
Lucent Technologies Inc.  
QC/QW030-Series Power Modules: dc-dc Converters;  
18 Vdc to 36 Vdc or 36 Vdc to 75 Vdc Inputs  
Advance Data Sheet  
September 2000  
Device Accessories  
Accessory  
Comcode  
1/4 in. transverse kit (heat sink, thermal pad, and screws)  
1/4 in. longitudinal kit (heat sink, thermal pad, and screws)  
1/2 in. transverse kit (heat sink, thermal pad, and screws)  
1/2 in. longitudinal kit (heat sink, thermal pad, and screws)  
1 in. transverse kit (heat sink, thermal pad, and screws)  
1 in. longitudinal kit (heat sink, thermal pad, and screws)  
848060992  
848061008  
848061016  
848061024  
848061032  
848061040  
Dimensions are in millimeters and (inches).  
1/4 IN.  
1/4 IN.  
1.450 ± 0.015  
(36.83 ± 0.38)  
1/2 IN.  
1 IN.  
1/2 IN.  
1 IN.  
2.280 ± 0.015  
(57.91 ± 0.38)  
1.850 ± 0.005  
(47.24 ± 0.13)  
1.030 ± 0.005  
(26.16 ± 0.13)  
8-2473(F)  
8-2472(F)  
Figure 16. QC/QW030-Series Longitudinal Heat  
Sink  
Figure 17. QC/QW030-Series Transverse Heat Sink  
Lucent Technologies Inc.  
15  
For additional information, contact your Lucent Technologies Account Manager or the following:  
POWER SYSTEMS UNIT: Power Systems Group, Lucent Technologies Inc., 3000 Skyline Drive, Mesquite, TX 75149, USA  
+1-800-526-7819 (Outside U.S.A.: +1-972-284-2626, FAX +1-888-315-5182) (product-related questions or technical assistance)  
INTERNET:  
E-MAIL:  
http://www.lucent.com/networks/power  
techsupport1@lucent.com  
ASIA PACIFIC:  
Lucent Technologies Singapore Pte. Ltd., 750D Chai Chee Road #07-06, Chai Chee Industrial Park, Singapore 469004  
Tel. (65) 240 8041, FAX (65) 240 8438  
CHINA:  
JAPAN:  
Lucent Technologies (China) Co. Ltd., SCITECH Place No. 22 Jian Guo Man Wai Avenue, Beijing 100004, PRC  
Tel. (86) 10-6522 5566 ext. 4187, FAX (86) 10-6512 3694  
Lucent Technologies Japan Ltd., Mori Building No. 21, 4-33, Roppongi 1-chome, Minato-ku, Tokyo 106-8508, Japan  
Tel. (81) 3 5561 5831, FAX (81) 3 5561 1616  
LATIN AMERICA: Lucent Technologies Inc., Room 416, 2333 Ponce de Leon Blvd., Coral Gables, FL 33134, USA  
Tel. +1-305-569-4722, FAX +1-305-569-3820  
EUROPE:  
Data Requests: DATALINE:Tel. (44) 7000 582 368, FAX (44) 1189 328 148  
Technical Inquiries:GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),  
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 3507670 (Helsinki),  
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 91 807 1441 (Madrid)  
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No  
rights under any patent accompany the sale of any such product(s) or information.  
Copyright © 2000 Lucent Technologies Inc.  
All Rights Reserved  
Printed in U.S.A.  
September 2000  
DS00-246EPS (Replaces DS00-135EPS)  
Printed On  
Recycled Paper  
厂商 型号 描述 页数 下载

LINEAGEPOWER

QW010A0A 36伏至75伏直流输入; 1.2 Vdc至5.0 Vdc输出; 10 A至20 A[ 36 Vdc to 75 Vdc Input; 1.2 Vdc to 5.0 Vdc Output; 10 A to 20 A ] 24 页

LINEAGEPOWER

QW010A0A1 36伏至75伏直流输入; 1.2 Vdc至5.0 Vdc输出; 10 A至20 A[ 36 Vdc to 75 Vdc Input; 1.2 Vdc to 5.0 Vdc Output; 10 A to 20 A ] 24 页

LINEAGEPOWER

QW010A0A1-H 36 - 75VDC输入; 1.0VDC至5V直流输出; 10A至20A输出电流[ 36 - 75Vdc Input; 1.0Vdc to 5Vdc Output; 10A to 20A Output current ] 5 页

LINEAGEPOWER

QW010A0A1-SZ 36伏至75伏直流输入; 1.2 Vdc至5.0 Vdc输出; 10 A至20 A[ 36 Vdc to 75 Vdc Input; 1.2 Vdc to 5.0 Vdc Output; 10 A to 20 A ] 24 页

LINEAGEPOWER

QW010A0A1Z 36伏至75伏直流输入; 1.2 Vdc至5.0 Vdc输出; 10 A至20 A[ 36 Vdc to 75 Vdc Input; 1.2 Vdc to 5.0 Vdc Output; 10 A to 20 A ] 24 页

LINEAGEPOWER

QW015A0F 36伏至75伏直流输入; 1.2 Vdc至5.0 Vdc输出; 10 A至20 A[ 36 Vdc to 75 Vdc Input; 1.2 Vdc to 5.0 Vdc Output; 10 A to 20 A ] 24 页

LINEAGEPOWER

QW015A0F-H 36 - 75VDC输入; 1.0VDC至5V直流输出; 10A至20A输出电流[ 36 - 75Vdc Input; 1.0Vdc to 5Vdc Output; 10A to 20A Output current ] 5 页

LINEAGEPOWER

QW015A0F1 36伏至75伏直流输入; 1.2 Vdc至5.0 Vdc输出; 10 A至20 A[ 36 Vdc to 75 Vdc Input; 1.2 Vdc to 5.0 Vdc Output; 10 A to 20 A ] 24 页

LINEAGEPOWER

QW015A0F1-SZ 36伏至75伏直流输入; 1.2 Vdc至5.0 Vdc输出; 10 A至20 A[ 36 Vdc to 75 Vdc Input; 1.2 Vdc to 5.0 Vdc Output; 10 A to 20 A ] 24 页

LINEAGEPOWER

QW015A0F1Z 36伏至75伏直流输入; 1.2 Vdc至5.0 Vdc输出; 10 A至20 A[ 36 Vdc to 75 Vdc Input; 1.2 Vdc to 5.0 Vdc Output; 10 A to 20 A ] 24 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.172701s