找货询价

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

QQ咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

技术支持

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

售后咨询

一对一服务 找料无忧

专属客服

服务时间

周一 - 周六 9:00-18:00

8XC51SLLOWVOLTAGE8XC51SL

型号:

8XC51SLLOWVOLTAGE8XC51SL

描述:

键盘控制器[ KEYBOARD CONTROLLER ]

品牌:

INTEL[ INTEL ]

页数:

23 页

PDF大小:

257 K

8XC51SL/LOW VOLTAGE 8XC51SL  
KEYBOARD CONTROLLER  
e
81C51SL Ð 16K ROM Preprogrammed with SystemSoft Keyboard Controller and Scanner  
g
5V 10%  
80C51SL Ð CPU with RAM and I/O; V  
CC  
e
83C51SL Ð 16K Factory Programmed ROM. V  
g
5V 10%.  
Firmware. V  
CC  
e
g
5V 10%.  
CC  
e
Low Voltage 80C51SLÐCPU with RAM and I/O; V  
g
5V 10%.  
87C51SL Ð 16K OTP ROM. V  
CC  
e
Low Voltage 81C51SLÐ 16K ROM Preprogrammed with SystemSoft Keyboard Controller  
g
3.3V 0.3V  
CC  
e
Low Voltage 83C51SLÐ 16K Factory Programmed ROM. V  
g
e
and Scanner Firmware. V  
3.3V 0.3V.  
CC  
g
3.3V 0.3V.  
CC  
e
g
3.3V 0.3V.  
Low Voltage 87C51SLÐ 16K OTP ROM. V  
CC  
Y
Y
Proliferation of 8051 Architecture  
4-Channel, 8-Bit A/D  
Y
Y
Y
Complete 8042 Keyboard Control  
Functionality  
Interface for up to 32 Kbytes of  
External Memory  
Y
8042 Style Host Interface  
Slew Rate Controlled I/O Buffers Used  
to Minimize Noise  
Y
Optional Hardware Speedup of  
GATEA20 and RCL  
Y
Y
Y
256 Bytes Data RAM  
Y
Local 16 x 8 Keyboard Switch Matrix  
Support  
Three Multifunction I/O Ports  
10 Interrupt Sources with 6 User-  
Definable External Interrupts  
Y
Two Industry Standard Serial Keyboard  
Interfaces; Supported via Four High  
Drive Outputs  
Y
Y
2 MHz16 MHz Clock Frequency  
100-Pin PQFP (8XC51SL)  
100-Pin SQFP (Low Voltage 8XC51SL)  
Y
Y
5 LED Drivers  
Low Power CHMOS Technology  
The 8XC51SL, based on Intel’s industry-standard MCS 51 microcontroller family, is designed for keyboard  
É
control in laptop and notebook PCs. The highly integrated keyboard controller incorporates an 8042-style UPI  
host interface with expanded memory, keyboard scan, and power management. The 8XC51SL supports both  
serial and scanned keyboard interfaces and is available in pre-programmed versions to reduce time to market.  
The Low Voltage 8XC51SL is the 3.3V version optimized for even further power savings. Throughout the  
remainder of this document, both devices will generally be referred to as 51SL.  
The 8XC51SL is a pin-for-pin compatible replacement for the 8XC51SL-BG. It does, however have some  
additional functionality. Those additional functions are as follows:  
1. 16K OTP ROM: The 8XC51SL-BG had only 8K of ROM.  
2. New Register Set: The 8XC51SL adds a second set of host interface registers available for use in support-  
ing power management. This required an additional address line (A1) for decoding. To accommodate this,  
one V  
pin was removed. However, in order to maintain compatibility with the -BG version, an enable bit  
CC  
for this new register set was added in configuration register 1. This allows the 8XC51SL to be drop in  
compatible to existing 8XC51SL-BG designs; no software modifications required.  
NOTE:  
pins require that all three V  
The changes made to the V  
pins be properly connected. Failing to do so  
CC  
CC  
could result in high leakage current and possible damage to the device.  
*Other brands and names are the property of their respective owners.  
Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or  
copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Intel retains the right to make  
changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.  
©
COPYRIGHT INTEL CORPORATION, 1995  
November 1994  
Order Number: 272271-002  
8XC51SL/LOW VOLTAGE 8XC51SL  
272271–1  
Figure 1. Block Diagram  
2
8XC51SL/LOW VOLTAGE 8XC51SL  
272271–2  
Figure 2. Connection Diagram (PQFP and SQFP)  
PACKAGES  
Part  
Prefix  
KU  
Suffix  
AH  
Package Type  
100-Pin PQFP  
100-Pin SQFP  
8XC51SL  
Low Voltage 8XC51SL  
SB  
AL  
3
8XC51SL/LOW VOLTAGE 8XC51SL  
PIN DESCRIPTIONS  
Table 1. Pin Descriptions  
Symbol  
Type  
Description  
V
V
Circuit ground potential.  
Supply voltage during normal, Idle, and Power-Down operation; nominally 5V  
SS  
a
CC  
a
10% for 8XC51SL, 3.3V 0.3V for Low Voltage 8XC51SL.  
g
g
PCDB0–7  
I/O  
Host interface data bus. An 8-bit bidirectional port for data transfers between the  
host processor and the keyboard controller.  
WRL  
I
I
The active-low, host-interface write signal.  
The active-low, host-interface read signal.  
The active-low, host-interface chip select.  
Host-Interface Address select inputs.  
RDL  
CSL  
I
A0A1  
PCOBF  
GATEA20  
RCL/PROGL  
I
O
O
O
The active-high, host-interface Output Buffer Full interrupt.  
Gate A20 control signal output.  
Host resetÐactive low. This pin is also the program pulse input during EPROM  
programming.  
LED0–3  
KSI0–7  
O
I
LED output drivers.  
Keyboard input scan lines (input Port 0). Schmitt inputs with 5K20K pull-up  
resistors.  
KSO015  
O
Keyboard output scan lines.  
PORT 1  
I/O  
Port 1 is a general-purpose, 8-bit bidirectional port with internal pull-ups. It also  
supports the following user-selectable functions:  
P10/A0–  
P17/A7  
P10P16 are available for connection to dedicated keyboard inputs. A0A7 output  
the low-order address byte (refer to LOADREN signal).  
LOADREN  
I
Low address enable. When set high, address bits A0A7 are output on P10P17.  
PORT2  
I/O  
Port 2 is a general-purpose, 8-bit bidirectional port with internal pull-ups on P206/  
A814. It also supports the following user-selectable functions:  
P206/A814 output the high-order address byte.  
P206/A814  
P27/LED4  
P27/LED4 is available as a fifth LED output driver (by writing to the port bit 7).  
PORT 3  
I/O  
Port 3 is a general-purpose, 8-bit bidirectional port. P32/INT0, P34/T0, P36/WRL,  
and P37/RDL have internal pull-ups. P30/SIF00, P31/SIF01, P33/SIF10, and  
P35/SIF11 are high-drive open-drain outputs. It also supports the following user-  
selectable functions:  
P30/SIF00  
P31/SIF01  
A high-drive, open-drain output to support an external serial keyboard interface  
(typically CLK); RXD (8051 UART serial input port); SIF0INTL (serial interface  
interrupt 0).  
A high-drive, open-drain output to support an external serial keyboard interface  
(typically DATA); TXD (8051 UART serial output port).  
INT0L (external interrupt 0).  
P32/INT0  
P33/SIF10  
A high-drive, open-drain output to support an external serial keyboard interface  
(typically mouse CLK); SIF1INTL (external interrupt 1).  
P34/T0  
AUXOBF1 (output buffer fullÐmouse support); T0 (Timer/Counter 0 external  
input).  
P35/SIF11  
A high-drive, open-drain output to support an external serial keyboard interface  
(typically mouse DATA); T1 (Timer/Counter 1 external input).  
WRL (external data memory write strobe); inactive at addresses 7FF07FFFH.  
AUXOBF2 (output buffer full interrupt); INT2L (external interrupt); RDL (external  
data memory read strobe); inactive at addresses 7FF0FFFFH.  
P36/WRL  
P37/RDL  
4
8XC51SL/LOW VOLTAGE 8XC51SL  
PIN DESCRIPTIONS (Continued)  
Table 1. Pin Descriptions (Continued)  
Description  
Symbol Type  
XTAL1  
XTAL2  
AVGND  
AVREF  
I
Input to the on-chip oscillator.  
Output from the on-chip oscillator.  
Analog ground potential.  
O
a
a
g
g
Analog supply voltage; nominally 5V 10% for 8XC51SL, 3.3V 0.3V for Low  
Voltage 8XC51SL.  
AIN0–3  
I
A/D Analog input channels.  
ADB0–7  
I/O  
External address/data bus. Multiplexes the low-address byte and data during external  
memory accesses.  
EAL/V  
I
External address input. When held high, the 51SL CPU executes out of internal Program  
Memory unless the program counter exceeds 3FFFH. When held low, the 51SL CPU  
always executes out of external memory. EAL is latched on the falling edge of RST. This  
PP  
pin also receives the programming supply voltage (V ) during EPROM programming.  
PP  
ALE  
O
Address Latch Enable output pulse latches the low address byte during external  
memory access. ALE is output at a constant rate of (/6 the oscillator frequency, whether  
or not there are accesses to external memory. One ALE pulse is skipped during the  
execution of a MOVX instruction. ALE is disabled during Idle mode and can also be  
disabled via Configuration register 1 control.  
PSENL  
O
Program Store Enable is the read strobe to external program memory. PSENL is  
qualified with RDL and A15 for use with an external Flash memory. PSENL is not active  
when the device executes out of internal program memory.  
MEMCSL  
I/O  
External Memory Chip Select for code space address 4000H and above, when EAL is  
inactive (i.e., high). For EAL low, MEMCSL is active. Goes inactive during Idle mode and  
Power-Down mode. If external memory interfacing is not required, MEMCSL can be  
configured as a general purpose I/O (controlled via Configuration register 1).  
RST  
I
Resets the keyboard controller. Hold RST high for two machine cycles.  
5
8XC51SL/LOW VOLTAGE 8XC51SL  
8XC51SL/LOW VOLTAGE 8XC51SL PIN CHARACTERISTICS  
Table 2. Pin Characteristics  
Pin No.  
1
Pin Name  
KSO0  
KSO1  
KSO2  
KSO3  
KSO4  
KSO5  
KSO6  
KSO7  
KSO8  
KSO9  
KSO10  
KSO11  
Type  
O
Term  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
OD  
Reset  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
PD Mode  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
2
O
3
O
4
O
5
O
6
O
7
O
8
O
9
O
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
O
O
O
V
V
SS  
CC  
KSO12  
KSO13  
KSO14  
KSO15  
KSI0  
O
O
OD  
TRI  
TRI  
TRI  
L
HOLD  
HOLD  
HOLD  
HOLD  
NC  
OD  
O
OD  
O
OD  
I
5K20K PU  
5K20K PU  
5K20K PU  
5K20K PU  
5K20K PU  
5K20K PU  
5K20K PU  
5K20K PU  
KSI1  
I
NC  
KSI2  
I
NC  
KSI3  
I
NC  
KSI4  
I
NC  
KSI5  
I
NC  
KSI6  
I
NC  
KSI7  
I
NC  
ALE  
O
L
L
e
MEMCSL  
PSENL  
P10/A0  
P11/A1  
P12/A2  
P13/A3  
P14/A4  
P15/A5  
P16/A6  
P17/A7  
O
L (EAL  
L
0)  
H
O
L
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
WH  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
WH  
WH  
WH  
WH  
WH  
WH  
WH  
6
8XC51SL/LOW VOLTAGE 8XC51SL  
8XC51SL/LOW VOLTAGE 8XC51SL PIN CHARACTERISTICS (Continued)  
Table 2. Pin Characteristics (Continued)  
Pin No.  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
Pin Name  
Type  
Term  
Reset  
PD Mode  
V
V
SS  
SS  
ADB0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
WH  
WH  
WH  
WH  
WH  
WH  
WH  
TRI  
TRI  
TRI  
ADB1  
ADB2  
TRI  
ADB3  
TRI  
ADB4  
TRI  
ADB5  
TRI  
ADB6  
TRI  
ADB7  
TRI  
P20/A8  
P21/A9  
P22/A10  
P23/A11  
P24/A12  
P25/A13  
P26/A14  
P27/LED4  
PU  
PU  
PU  
PU  
PU  
PU  
PU  
OD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
V
SS  
GATEA20  
PCDB7  
O
WH  
TRI  
TRI  
TRI  
TRI  
TRI  
TRI  
WH  
HOLD  
TRI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
PCDB6  
TRI  
PCDB5  
TRI  
PCDB4  
TRI  
PCDB3  
TRI  
PCDB2  
TRI  
RCL/PROGL  
HOLD  
V
CC  
PCDB1  
PCDB0  
RST  
I/O  
TRI  
TRI  
TRI  
TRI  
I/O  
I
O
I
XTAL2  
XTAL1  
PCOBF  
CSL  
H
O
I
L
HOLD  
RDL  
I
WRL  
I
7
8XC51SL/LOW VOLTAGE 8XC51SL  
8XC51SL/LOW VOLTAGE 8XC51SL PIN CHARACTERISTICS (Continued)  
Table 2. Pin Characteristics (Continued)  
Pin No.  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Pin Name  
A0  
Type  
Term  
Reset  
PD Mode  
I
I
I
I
I
AIN3  
AIN2  
AIN1  
AIN0  
AVREF  
AVGND  
V
V
CC  
SS  
P37/RDL  
P36/WRL  
P35/SIF11  
P34/T0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
PU  
PU  
OD  
PU  
OD  
PU  
OD  
OD  
WH  
WH  
TRI  
WH  
L
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
HOLD  
P33/SIF10  
P32/INT0  
P31/SIF01  
P30/SIF00  
A1  
WH  
TRI  
L
V
SS  
EAL  
I
I
LOADREN  
V
SS  
LED3  
LED2  
LED1  
LED0  
O
O
O
O
OD  
OD  
OD  
OD  
TRI  
TRI  
TRI  
TRI  
HOLD  
HOLD  
HOLD  
HOLD  
NOTES:  
1. During Power Down mode all floating I/O pins or inputs without internal pullups should be driven.  
e
e
e
e
Weak High, TRI Tri-State.  
2. PU  
Pulled Up, OD  
Open Drain, WH  
8
8XC51SL/LOW VOLTAGE 8XC51SL  
PORT STRUCTURES AND  
OPERATION  
Idle Mode  
Idle mode is initiated by an instruction that sets the  
PCON.0 bit (SFR address 87H) in the 51SL. In Idle  
mode, the internal clock signal to the 51SL CPU is  
gated off, but not to the interrupt timer and Serial  
Port functions. The 51SL status is preserved in its  
entirety: the Stack Pointer, Program Counter, Pro-  
gram Status Word, Accumulator, and all other regis-  
ters maintain their data. The port pins hold the logic  
levels they had when Idle mode was activated. ALE  
and PSENL are held high. If an A/D conversion is in  
process when Idle mode is entered, any conversion  
results may contain erroneous data. Idle mode is ex-  
ited via a hardware reset, or an enable interrupt.  
All three 51SL ports are bidirectional. Each consists  
of a latch (Special Function Registers P1 through  
P3), an output driver, and an input buffer. Port 0 of  
the 51SL CPU does not connect to the package  
pins. It is used internally to drive the keyboard scan  
logic.  
The output drivers of ports 1 and 2 can be used in  
accesses to external memory. The 51SL provides  
the LOADREN signal to facilitate external memory  
interfaces. When the LOADREN signal is high, Port  
1 outputs the low byte of the external memory ad-  
dress. If LOADREN is tied low, then the Port 1 sig-  
nals continue to emit the P1 SFR content. Port 2  
outputs the upper seven bits of the high byte of the  
external address when the address is 15 bits wide  
and either EAL is tied low or EAL is tied high and Bit  
0 (ADDREN) of configuration register 1 is set. Other-  
wise, the Port 2 pins continue to emit the P2 SFR  
content.  
Power Down Mode  
Power Down mode is initiated by an instruction that  
sets bit PCON.1 in the 51SL CPU. When the 51SL  
enters Power Down mode, all internal clocks, includ-  
ing the 51SL core clock, are turned off. If an external  
crystal is used, the internal oscillator is turned off.  
MEMCSL, the external memory select signal, goes  
inactive unless it is configured as a general purpose  
I/O (i.e., unless bit 3 of configuration register 1 is a  
‘‘1’’). ALE and PSENL are both forced low. RAM  
contents are preserved.  
I/O Configurations  
All port pins with the exception of P27/LED4,  
P30/SIF00, P31/SIF01, P33/SIF10, and P35/SIF11  
have fixed internal pullups and therefore are called  
‘‘quasi-bidirectional ports’’. When configured as in-  
puts, the pins are pulled high by the pullups and will  
source current when externally pulled low.  
Power Down mode can only be exited via a reset.  
This reset may occur either from the RST pin, or an  
internally generated reset. See the 51SL Hardware  
Ý
Description (Order No. 272268) for a detailed de-  
scription of this reset.  
During a 15-bit external program memory access,  
Port 2 outputs the high address byte. In the 80C51  
the Port 2 drivers use the strong pullup during the  
entire time that they are emitting a ‘‘1’’ on a Port 2  
bit. In this instance, the 80C51 weak quasi-bidirec-  
tional pullup condition that normally occurs after two  
oscillator periods does not occur. Port 1 and Port 2  
of the 51SL emulate the quasi-bidirectional pullup  
condition during program memory access, not this  
extended strong pullup condition.  
HOST INTERFACE  
The 51SL host interface is functionally compatible  
with the 8042 style UPI interface. It consists of the  
PCDB0–7 data bus; the RDL, WRL, A0 and CSL  
control signals; and the Keyboard Status register,  
Input Data register, and Output Data register. In ad-  
dition, a second address line, A1, has been added to  
decode a second set of registers for power manage-  
ment functions. These registers are identical to the  
keyboard registers. The host interface also includes  
a PCOBF interrupt, GATEA20, and host reset (RCL)  
outputs. Two additional OBF signals, AUXOBF1 and  
AUXOBF2 are available through firmware configura-  
tion of P34/T0 and P37/RDL respectively.  
POWER MANAGEMENT  
The 51SL uses low power CHMOS and provides for  
two further power savings modes, available when in-  
active: Idle mode, typically between keystrokes; and  
Power Down mode, upon command from the host. A  
four channel, eight-bit A/D converter is also includ-  
ed for power management (i.e., battery voltage/tem-  
perature monitoring, etc.).  
9
8XC51SL/LOW VOLTAGE 8XC51SL  
KEYBOARD SCAN  
The 51SL has four high-drive, open-drain, bidirec-  
tional port pins that can be used for external serial  
interfaces, such as ISA external keyboard and PS/2-  
type mouse interfaces. They are P30/SIF00, P31/  
SIF01, P33/SIF10, and P35/SIF11. P33/SIF10 is  
connected to the firmware configurable level/edge  
sensitive INTL interrupt pin of the 51SL CPU. P30/  
SIF00 is connected to the edge sensitive SIF0INTL  
interrupt pin of the 51SL CPU. Note that on the Low  
Voltage 8XC51SL these inputs are protected to 5.5V  
in order to provide compatibility with as many exter-  
nal keyboard and PS/2 mouse devices as possible.  
The interface to the keyboard scan logic includes 16  
slew-rate-controlled, open drain scan out lines  
(KSO015) and eight Schmitt trigger sense lines  
(KSI07) with internal pullup resistors. KSI0–7 con-  
nect directly to Port 0 of the 51SL CPU. The 16 scan  
out lines are controlled by the four low order bits of  
Port 0. Together KSO015 and KSI0–7 form a key-  
board matrix.  
EXTERNAL KEYBOARD AND  
MOUSE INTERFACE  
DESIGN CONSIDERATIONS  
Industry standard PC-AT compatible keyboards em-  
ploy a two wire, bidirectional TTL interface for data  
transmission. Several sources also supply PS/2  
mouse products that employ the same type of inter-  
face. To facilitate system expansion, the 51SL pro-  
vides four signal pins that may be used to implement  
this interface directly for an external keyboard and  
mouse.  
The low voltage characteristics of the Low Voltage  
8XC51SL have indicated that additional care should  
be taken in selection of the crystal used in the oscil-  
lator circuit. In particular, series resistance of a crys-  
tal seems to have the largest effect on start-up time  
and steady state amplitude. Consequently, the lower  
the series resistance the better, although medium to  
better quality crystals are generally more than ade-  
quate.  
10  
8XC51SL/LOW VOLTAGE 8XC51SL  
ELECTRICAL SPECIFICATIONS  
NOTICE: This data sheet contains information on  
products in the sampling and initial production phases  
of development. It is valid for the devices indicated in  
the revision history. The specifications are subject to  
change without notice.  
ABSOLUTE MAXIMUM RATINGS*  
Ambient Temperature  
Under Bias ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 40 C to 85 C  
b
a
*WARNING: Stressing the device beyond the ‘‘Absolute  
Maximum Ratings’’ may cause permanent damage.  
These are stress ratings only. Operation beyond the  
‘‘Operating Conditions’’ is not recommended and ex-  
tended exposure beyond the ‘‘Operating Conditions’’  
may affect device reliability.  
§
Storage Temperature ÀÀÀÀÀÀÀÀÀÀ 65 C to 150 C  
§
b
a
§
ÀÀÀ 0.5V to V  
§
0.5V  
b
a
CC  
Voltage on Any Pin to V  
SS  
Power DissipationÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ1.0W**  
**This value is based on the maximum allowable die tem-  
perature and the thermal resistance of the package.  
OPERATING CONDITIONS  
e
Low Voltage 8XC51SL: T (Under Bias)  
a
e a  
a
e
0V  
SS  
g
8XC51SL: T (Under Bias)  
A
0 C to 70 C, V  
§
5V  
0 C to 70 C, V  
10%, V  
e a  
§
CC  
e
e
0V  
SS  
g
3.3V  
0.3V, V  
§
§
A
CC  
8XC51SL DC Characteristics (Over Operating Conditions)  
Symbol Parameter Min  
Input Low Voltage  
Max  
Units  
Test Conditions  
b
V
V
V
0.5  
0.8  
V
IL  
(Except XTAL1, RST)  
b
b
Input Low Voltage  
(XTAL1, RST)  
0.5  
0.2 V  
0.1  
IL1  
IH  
CC  
a
Input High Voltage (Except EAL,  
PCDB07, ADB07, XTAL1, RST,  
CSL, RDL, WRL,  
2.4  
V
0.5  
V
CC  
LOADREN, A0, A1)  
b
a
a
V
V
Input High Voltage (EAL)  
V
1.5  
V
V
0.5  
0.5  
V
V
IH1  
IH2  
CC  
CC  
CC  
Input High Voltage (PCDB07,  
ADB00-7, XTAL1, RST,  
CSL, RDL, WRL,  
0.7 V  
CC  
LOADREN, A0, A1)  
R
Internal Port Resistors KSI0–7  
Output Low Voltage  
(1)  
BP Pins (Except P27/LED4)  
5
20  
KX  
P
b
b
b
e
e
e
V
V
V
0.5  
0.4  
0.8  
0.4  
V
I
I
I
16 mA  
12 mA  
4 mA  
OL  
OL  
OL  
OL  
Output Low Voltage  
P27/LED4, LED0–3  
0.5  
0.5  
V
V
OL1  
OL2  
(2)  
QB Pins , PCDB07, RCL,  
ADB07, GATEA20, KSO015,  
MEMCSL, ALE, PSENL, PCOBF  
a
e b  
e b  
V
V
Output High Voltage  
QB Pins, ALE, PSENL, PCOBF  
2.4  
V
V
0.5  
0.5  
V
V
I
I
60 mA  
OH  
CC  
OH  
OH  
a
a
Outut High Voltage  
MEMCSL,  
PCDB07, ADB0–7  
4.0  
4.0  
2.0 mA  
OH1  
CC  
e
60 mA  
V
Output High Voltage  
RCL, GATEA20  
V
0.5  
V
I
OH2  
CC  
OH  
11  
8XC51SL/LOW VOLTAGE 8XC51SL  
8XC51SL DC Characteristics (Over Operating Conditions) (Continued)  
Symbol  
Parameter  
Min  
Max  
Units  
Test Conditions  
b
e
0.4V  
I
Logical 0 Input Current  
(2)  
QB Pins  
50  
mA  
V
IN  
IL  
k
k
g
I
Input Leakage Current  
(BP and Pure Input Pins  
except for KSI07, XTAL1, and EAL)  
10  
mA  
0
V
V
CC  
LI  
IN  
b
e
2.0V  
I
I
Logical 1 to 0 Transition  
(2)  
Current QB Pins  
1
mA  
V
TL  
IN  
Power Supply Current  
Active Mode at 16 MHz  
Idle Mode at 16 MHz  
Power-Down Mode  
CC  
38  
15  
TBD  
mA  
mA  
mA  
Low Voltage 8XC51SL DC Characteristics (Over Operating Conditions)  
Symbol  
Parameter  
Min  
Max  
Units Test Conditions  
b
V
Input Low Voltage  
(Except XTAL1, RST, KSI07)  
0.5  
0.5  
0.5  
0.8  
V
IL  
b
b
b
0.1  
V
IL1  
Input Low Voltage  
(XTAL1, RST)  
0.2 V  
CC  
V
V
Input Low Voltage (KSI07)  
0.6  
IL2  
a
Input High Voltage (Except EAL,  
PCDB07, ADB07, XTAL1, RST)  
P30, P31, P33, P35)  
2.0  
V
0.5  
V
IH  
CC  
b
a
a
V
V
Input High Voltage (EAL)  
V
1
V
V
0.5  
0.5  
V
V
IH1  
CC  
CC  
CC  
Input High Voltage (PCDB07,  
ADB07, XTAL1, RST)  
0.7 V  
CC  
IH2  
V
IH3  
Input High Voltage  
(P30, P31, P33, P35)  
2.0  
5.5  
V
R
P
Internal Port Resistors KSI0–7  
5
20  
KX  
b
e
e
e
V
V
V
Output Low Voltage  
(1)  
BP Pins (Except P27/LED4)  
0.5  
0.5  
0.5  
0.4  
V
V
V
I
I
I
16 mA  
12 mA  
4 mA  
OL  
OL  
OL  
OL  
b
b
Output Low Voltage  
P27/LED4, LED0–3  
0.8  
0.4  
OL1  
OL2  
Output Low Voltage  
(2)  
QB Pins , PCDB07, RCL,  
ADB07, GATEA20, KSO015,  
MEMCSL, ALE, PSENL, PCOBF  
b
a
e b  
e b  
V
V
Output High Voltage  
QB Pins, ALE, PSENL, PCOBF  
V
0.7  
V
V
0.5  
0.5  
V
V
I
I
60 mA  
OH  
CC  
CC  
OH  
OH  
a
a
Output High Voltage  
MEMCSL,  
PCDB07, ADB0–7  
2.4  
2.4  
2.0 mA  
OH1  
CC  
e
e
V
OH2  
Output High Voltage  
RCL, GATEA20  
V
0.5  
V
I
60 mA  
CC  
OH  
b
I
I
Logical 0 Input Current  
(2)  
QB Pins  
50  
10  
mA  
mA  
V
0.4V  
IL  
LI  
IN  
k
k
g
Input Leakage Current  
(BP and Pure Input Pins  
except for KSI07, XTAL1, and EAL)  
0
V
V
CC  
IN  
12  
8XC51SL/LOW VOLTAGE 8XC51SL  
Low Voltage 8XC51SL DC Characteristics (Over Operating Conditions)  
Symbol  
Parameter  
Min  
Max  
Units  
Test Conditions  
b
e
1.5V  
I
Logical 1 to 0 Transition  
(2)  
Current QB Pins  
650  
mA  
V
TL  
IN  
I
Power Supply Current  
Active Mode at 16 MHz  
Idle Mode at 16 MHz  
Power-Down Mode  
CC  
25  
10  
175  
mA  
mA  
mA  
NOTES:  
1. Bidirectional (BP) pins include P27/LED4, P30/SIF00, P31/SIF01, P33/SIF10, P36/SIF11, MEMCSL, PCDB07, and  
ADB07.  
2. Quasi-bidirectional (QB) pins include P206/A8A14, P32/INT0, P34/T0, P36/WRL, P37/RDL and P107/A07.  
3. Pure input pins include LOADREN, EAL, A0, A1, CSL, RDL, WRL, RST, AIN03, and XTAL1.  
Table 3. AC Symbol Characters  
AC Characteristics  
Char.  
Meaning  
EXPLANATION OF THE AC SYMBOLS  
A
C
D
H
I
Address  
Clock  
Input Data  
Each timing symbol has three or five characters. The  
first character is always ‘‘T’’ (for time). The other  
characters, depending on their positions, stand for  
the name of a signal or the logical status of that  
signal. Table 3 lists the characters and their mean-  
ings.  
Logic Level HIGH  
Instruction (Program Memory Contents)  
L
Logic Level LOW, or ALE  
PSENL  
P
Q
R
T
V
W
X
Z
Output Data  
RDL Signal  
Example  
e
e
Time  
Valid  
TAVLL  
TLLPL  
Time for Address Valid to ALE Low.  
Time for ALE Low to PSEN Low.  
WRL Signal  
No Longer a Valid Logic Level  
Float  
HOST-INTERFACE TIMING  
All Outputs Loaded with 50 pF  
Symbol  
Parameter  
Min  
0
Max  
Units  
ns  
TAR  
TRA  
TAD  
TAW  
TWA  
TDW  
TWD  
TWW  
TRR  
TRD  
TDF  
CSL, A0/A1 Setup to RD Low  
CSL, A0/A1 Hold after RDL High  
CSL, A0/A1 to Data Out Delay  
CSL, A0/A1 Setup to WRL Low  
CSL, A0/A1 Hold after WRL High  
Data Setup to WRL High  
0
ns  
50  
ns  
0
ns  
10  
60  
5
ns  
ns  
Data Hold after WRL High  
Minimum Pulse Width of WRL  
RDL Pulse Width  
ns  
50  
50  
ns  
ns  
RDL Low to Data Out Delay  
RDL High to Data Float Delay  
50  
50  
ns  
ns  
13  
8XC51SL/LOW VOLTAGE 8XC51SL  
EXTERNAL MEMORY TIMING  
e
TCLCL  
1 Clock Period, All Outputs Loaded with 50 pF  
Parameter  
Oscillator Frequency  
Symbol  
1/TCLCL  
TLHLL  
TAVLL  
TLLAX  
TLLIV  
Min  
Max  
Units  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
16  
b
2TCLCL 40  
ALE Pulse Width  
b
TCLCL 40  
Address Valid to ALE Low  
b
TCLCL 30  
Address Hold after ALE Low  
ALE Low to Valid Instruction In  
ALE Low to PSENL Low  
b
4TCLCL 100  
b
TCLCL 30  
TLLPL  
b
3TCLCL 45  
TPLPH  
TPLIV  
PSENL Pulse Width  
b
3TCLCL 105  
PSENL Low to Valid Instruction In  
Input Instruction Hold after PSENL High  
Input Instruction Float after PSENL High  
Address to Valid Instruction In  
PSENL Low to Address Float  
P37/RDL Pulse Width  
TPXIX  
0
b
TCLCL 25  
TPXIZ  
b
5TCLCL 105  
TAVIV  
TPLAZ  
TRLRH  
TWLWH  
TRLDV  
TRHDX  
TRHDZ  
TLLDV  
TAVDV  
TLLWL  
TAVWL  
TQVWX  
TWHQX  
TQVWH  
TRLAZ  
TWHLH  
10  
b
6TCLCL 50  
b
6TCLCL 50  
P36/WRL Pulse Width  
b
5TCLCL 100  
P37RDL Low to Valid Data In  
Data Hold after P37/RDL  
0
b
2TCLCL 50  
Data Float after P37/RDL  
b
8TCLCL 100  
ALE Low to Valid Data In  
b
9TCLCL 100  
Address to Valid Data In  
b
3TCLCL 25  
a
3TCLCL 25  
ALE Low to P37/RDL or P36/WRL Low  
Address Valid to P36/WRL Low  
Data Valid before P36/WRL  
Data Hold after P36/WRL  
b
4TCLCL 50  
b
TCLCL 25  
b
TCLCL 25  
b
7TCLCL 50  
Data Valid to P36/WRL High  
P37/RDL Low to Address Float  
P37/RDL or P36/WRL High to ALE High  
0
b
TCLCL 25  
a
TCLCL 25  
14  
8XC51SL/LOW VOLTAGE 8XC51SL  
272271–3  
Figure 3. Host-Interface Read  
272271–4  
Figure 4. Host-Interface Write  
272271–5  
Figure 5. External Data Memory Read  
15  
8XC51SL/LOW VOLTAGE 8XC51SL  
272271–6  
Figure 6. External Data Memory Write  
272271–7  
Figure 7. External Program Memory Read  
16  
8XC51SL/LOW VOLTAGE 8XC51SL  
SERIAL PORT TIMINGÐSHIFT REGISTER MODE  
e
Test Conditions: Over Operating Conditions, Load Capacitance  
50 pF  
16 MHz  
Variable Oscillator  
Units  
Oscillator  
Min Max  
750  
Symbol  
Parameter  
Min  
Max  
TXLXL  
Serial Port Clock Cycle Time  
12TCLCL  
ns  
ns  
b
10TCLCL 133  
TQVXH Output Data Setup to  
Clock Rising Edge  
492  
b
2TCLCL 117  
TXHQX Output Data Hold after  
Clock Rising Edge  
50  
0
ns  
ns  
ns  
TXHDX Input Data Hold after  
Clock Rising Edge  
0
b
10TCLCL 133  
TXHDV Clock Rising Edge to Input Data Valid  
492  
SHIFT REGISTER MODE TIMING WAVEFORMS  
272271–8  
EXTERNAL CLOCK DRIVE  
Symbol  
1/TCLCL  
TCHCX  
TCLCX  
Parameter  
Oscillator Frequency  
High Time  
Min  
2.0  
20  
Max  
Units  
MHz  
ns  
16  
Low Time  
20  
ns  
TCLCH  
TCHCL  
Rise Time  
20  
20  
ns  
Fall Time  
ns  
EXTERNAL CLOCK DRIVE WAVEFORM  
272271–9  
17  
8XC51SL/LOW VOLTAGE 8XC51SL  
PROGRAMMING THE OTP  
CONTROL SIGNALS: RST, GATEA20, P26, P27,  
P32, P36, P37.  
The part must be running with a 4 MHz to 6 MHz  
oscillator. The address of a location to be pro-  
grammed is applied to address lines, while the code  
byte to be programmed in that location is applied to  
data lines. Control and program signals must be held  
PROGRAM SIGNALS: RCL/PROGL, EAL/V  
.
PP  
PROGRAMMING ALGORITHM  
at the levels indicated in Table 4. Normally EAL/V  
is held at a logic high until just before RCL/PROGL  
Refer to Table 4 and Figures 8 and 9 for address,  
data and control signals setup. To program the  
87C51SL the following sequence must be exercised.  
PP  
is to be pulsed. The EAL/V  
is raised to V  
,
PP  
RCL/PROGL is pulsed low and then EAL/V is re-  
PP  
PP  
1. Input the valid address on the address lines.  
2. Input the appropriate data byte on the data lines.  
turned to V  
(also refer to timing diagrams). Also,  
CC  
the LOADREN signal must be grounded when pro-  
gramming or verifying.  
3. Activate the correct combination of control sig-  
nals.  
NOTE:  
maximum for any amount of  
time could damage the device permanently. The  
source must be well regulated and free of  
glitches.  
g
to 12.75V 0.25V.  
4. Raise EAL/V from V  
PP  
CC  
Exceeding the V  
PP  
5. Pulse RCL/PROGL 5 times.  
V
PP  
Repeat 1 through 5 changing the address and data  
for the entire array or until the end of the object file is  
reached.  
DEFINITION OF TERMS  
ADDRESS LINES: P10P17, P20P25, respective-  
ly for A0A13.  
DATA LINES:  
ADB07.  
Table 4. OTP Programming Modes  
RCL/  
Mode  
RST  
GATEA20  
EAL/V  
P26  
P27  
P32  
P36  
P37  
PP  
PROGL  
Program Code Data  
Verify Code Data  
H
L
L
L
ß
H
12.75V  
L
L
L
H
L
L
H
L
L
H
H
L
H
H
L
H
H
H
H
Read Signature Byte  
H
g
nals being driven to a ‘‘High’’ level must be raised to  
g
3.3V 0.3V.  
Note that in the above table, to program code data  
on the Low Voltage 87C51SL V must be raised to  
g
and control signals being driven to a ‘‘High’’ level  
0.3V. In addition, all address lines and control sig-  
CC  
5V 10%. In addition, all address lines, data lines,  
g
must be raised to 5V 10%. The RCL/PROGL sig-  
nal must pulse between 0V and 5V 10%.  
For the standard (5V version) of the 87C51SL V  
CC  
g
g
must always be at 5V 10%, and all ‘‘High’’ volt-  
ages must meet the DC specs indicated in the DC  
Characteristics section of this document.  
To verify code data or read the signature bytes of  
must be set to 3.3V  
the Low Voltage 87C51SL V  
CC  
18  
8XC51SL/LOW VOLTAGE 8XC51SL  
27227110  
*See Table 4 for proper input on these pins.  
Figure 8. Programming/Verifying the OTP  
27227111  
Figure 9. Programming Signal’s Waveforms  
PROGRAM VERIFY  
READING THE SIGNATURE BYTES  
Program verify may be done after each byte that is  
programmed, or after a block of bytes that is pro-  
grammed. In either case a complete verify of the  
array will ensure that it has been programmed cor-  
rectly.  
The 8XC51SL and Low Voltage 8XC51SL each have  
three signature bytes in locations 30H, 31H, and  
60H. To read these bytes, follow the procedure for  
EPROM verify, but activate the control lines provid-  
ed in Table 4 for Read Signature Byte.  
Contents  
Location  
Low Voltage  
87C51SL  
Low Voltage  
83C51SL  
87C51SL  
83C51SL  
30H  
31H  
60H  
89H  
58H  
BBH  
89H  
58H  
3BH  
89H  
58H  
ABH  
89H  
58H  
2BH  
19  
8XC51SL/LOW VOLTAGE 8XC51SL  
OTP PROGRAMMING AND VERIFICATION CHARACTERISTICS  
T
e
e
for programming the Low Voltage 87C51SL must be 5.0V 10%. V  
g
g
5V 10% for 87C51SL, 3.3V 0.3V for Low Voltage 87C51SL (verification only).  
21 C to 27 C; V  
§
§
A
V
CC  
e
0V  
g
CC  
SS  
Symbol  
Parameter  
Min  
Max  
13.0  
75  
Units  
V
V
Programming Supply Voltage  
Programming Supply Current  
Oscillator Frequency  
12.5  
PP  
I
mA  
PP  
1/TCLCL  
TAVGL  
TGHAX  
TDVGL  
TGHDX  
TEHSH  
TSHGL  
TGHSL  
TGLGH  
TAVQV  
TELQV  
TEHQZ  
TGHGL  
4
6
MHz  
Address Setp to PROGL Low  
Address Hold after PROGL  
Data Setup to PROGL Low  
Data Hold after PROGL  
48TCLCL  
48TCLCL  
48TCLCL  
48TCLCL  
48TCLCL  
10  
(Enable) High to V  
PP  
V
V
Setup to PROGL Low  
ms  
ms  
ms  
PP  
PP  
Hold after PROGL  
10  
PROGL Width  
90  
110  
Address to Data Valid  
ENABLE Low to Data Valid  
Data Float after Enable  
PROGL High to PROGL Low  
48TCLCL  
48TCLCL  
48TCLCL  
0
10  
ms  
PROGRAMMING AND VERIFICATION WAVEFORMS  
27227112  
20  
8XC51SL/LOW VOLTAGE 8XC51SL  
e
for the 8XC51SL, and at AVREF  
e
3.2V and V  
Testing is done at AVREF  
e
3.3V for the Low Voltage 8XC51SL.  
5.12V and V  
5.0V  
e
CC  
A/D CHARACTERISTICS  
CC  
The 51SL includes a four-channel, 8-bit A/D con-  
verter. This A/D, with eight bits of accuracy, uses  
successive approximation with a switch capacitor  
comparator. It is designed to be used for sampling  
static analog signals (i.e., ideally suited for power  
management tasks such as battery voltage monitor-  
ing, etc.). The nominal conversion rate is 20 ms at  
16 MHz. The analog high and low voltage refer-  
ences are connected to AVREF and AVGND, re-  
spectively. The four input channels, AIN0–3 are  
connected from the package pins, unbuffered, to an  
analog multiplexer (on-chip). The absolute conver-  
sion accuracy is dependent upon the accuracy of  
AVREF. The specifications given assume adherence  
to the operating conditions section of this data sheet.  
OPERATING CONDITIONS  
V
CC  
8XC51SL ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ4.5V to 5.5V  
Low Voltage 8XC51SL ÀÀÀÀÀÀÀÀÀÀÀÀÀ3.0V to 3.6V  
AVREF  
8XC51SL ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ4.5V to 5.5V  
Low Voltage 8XC51SL ÀÀÀÀÀÀÀÀÀÀÀÀÀ3.0V to 3.6V  
, AVSS ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ0V  
V
SS  
AIN0–3 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀAVSS to AVREF  
a
ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ0 C to 70 C Ambient  
T
F
§
§
ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ2 MHz to 16 MHz  
A
OSC  
A/D CONVERTER SPECIFICATIONS (Over Operating Conditions)  
Parameter  
Resolution  
Min  
Typ  
Max  
Units  
255  
8
256  
8
Levels  
Bits  
g
Absolute Error  
0
1
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
g
g
Full Scale Error  
1
1
Zero Offset Error  
g
g
g
Non-Linearity Error  
Differential Non-Linearity Error  
Channel to Channel Matching  
Repeatability  
0
0
0
1
1
1
g
0.25  
Temperature Coefficients  
Offset  
Full Scale  
0.003  
0.003  
0.003  
LSB/ C  
§
LSB/ C  
§
Differential Non-Linearity  
LSB/ C  
§
b
Off Isolation  
Feedthrough  
60  
dB  
dB  
dB  
X
b
b
60  
60  
V
Power Supply Rejection  
CC  
Input Resistance  
Input Capacitance  
DC Input Leakage  
750  
0
1.2K  
3.0  
3
pF  
mA  
21  
8XC51SL/LOW VOLTAGE 8XC51SL  
A/D Glossary of Terms  
Ideal CharacteristicÐA characteristic with its first  
e
code transition at V  
0.5 LSB, its last code tran-  
b
IN  
e
widths equal to one LSB.  
sition at V  
(V  
1.5 LSB) and all code  
Absolute ErrorÐThe maximum difference between  
corresponding actual and ideal code transitions. Ab-  
solute Error accounts for all deviations of an actual  
converter from an ideal converter.  
IN  
REF  
Input ResistanceÐThe effective series resistance  
from the analog input pin to the sample capacitor.  
Actual CharacteristicÐThe characteristic of an ac-  
tual converter. The characteristic of a given convert-  
er may vary over temperature, supply voltage, and  
frequency conditions. An actual characteristic rarely  
has ideal first and last transition locations or ideal  
code widths. It may even vary over multiple conver-  
sions under the same conditions.  
LSBÐLeast Significant BitÐThe voltage corre-  
n
sponding to the full scale voltage divided by 2 ,  
where n is the number of bits of resolution of the  
converter. For an 8-bit converter with a reference  
voltage of 5.12V, one LSB is 20 mV. Note that this is  
different than digital LSBs since an uncertainty of  
two LSBs, when referring to an A/D converter,  
equals 40 mV. (This has been confused with an un-  
certainty of two digital bits, which would mean four  
counts, or 80 mV).  
Break-Before-MakeÐThe property of a multiplexer  
which guarantees that a previously selected channel  
will be deselected before a new channel is selected  
(e.g., the converter will not short inputs together).  
MonotonicÐThe property of successive approxi-  
mation converters which guarantees that increasing  
input voltages produce adjacent codes of increasing  
value, and that decreasing input voltages produce  
adjacent codes of decreasing value.  
Channel-to-Channel MatchingÐThe difference be-  
tween corresponding code transitions of actual char-  
acteristics taken from different channels under the  
same temperature, voltage and frequency condi-  
tions.  
No Missed CodesÐFor each and every output  
code, there exists a unique input voltage range  
which produces that code only.  
CharacteristicÐA graph of input voltage versus the  
resultant output code for an A/D converter. It de-  
scribes the transfer function of the A/D converter.  
Non-LinearityÐThe maximum deviation of code  
transitions of the terminal based characteristic from  
the corresponding code transitions of the ideal char-  
acteristic.  
CodeÐThe digital value output by the converter.  
Code CenterÐThe voltage corresponding to the  
midpoint between two adjacent code transitions.  
Off-IsolationÐAttenuation of a voltage applied on a  
deselected channel of the A/D converter. (Also re-  
ferred to as Crosstalk.)  
Code TransitionÐThe point at which the converter  
a
changes from an output code of Q, to a code of Q  
1. The input voltage corresponding to a code tran-  
sition is defined to be that voltage which is equally  
likely to produce either of two adjacent codes.  
RepeatabilityÐThe difference between corre-  
sponding code transitions from different actual char-  
acteristics taken from the same converter on the  
same channel at the same temperature, voltage and  
frequency conditions.  
Code WidthÐThe voltage corresponding to the dif-  
ference between two adjacent code transitions.  
ResolutionÐThe number of input voltage levels  
that the converter can unambiguously distinguish  
between. Also defines the number of useful bits of  
information which the converter can return.  
CrosstalkÐSee ‘‘Off-Isolation’’.  
DC Input LeakageÐLeakage current to ground  
from an analog input pin.  
Sample DelayÐThe delay from receiving the start  
conversion signal to when the sample window  
opens.  
Differential Non-LinearityÐThe difference be-  
tween the ideal and actual code widths of the termi-  
nal based characteristic.  
Sample Delay UncertaintyÐThe variation in the  
sample delay.  
FeedthroughÐAttenuation of a voltage applied on  
the selected channel of the A/D Converter after the  
sample window closes.  
Sample TimeÐThe time that the sample window is  
open.  
Full Scale ErrorÐThe difference between the ex-  
pected and actual input voltage corresponding to  
the full scale code transition.  
Sample Time UncertaintyÐThe variation in the  
sample time.  
22  
8XC51SL/LOW VOLTAGE 8XC51SL  
b b  
The I spec changed from 650 mA to 1 mA.  
TL  
Sample WindowÐBegins when the sample capaci-  
tor is attached to a selected channel and ends when  
the sample capacitor is disconnected from the se-  
lected channel.  
The I idle spec changed from 10 mA to 15 mA.  
CC  
The I Power Down spec changed from 100 mA  
CC  
to TBD.  
Successive ApproximationÐAn A/D conversion  
method which uses a binary search to arrive at the  
best digital representation of an analog input.  
5. In the Low Voltage 8XC51SL DC Characteristics  
section:  
b
CC  
The V  
spec changed from 2.4V to V  
0.7  
) changed from  
OH  
OH  
The  
b
V
test condition (I  
b
OH  
Temperature CoefficientsÐChange in the stated  
variable per degree centrigrade temperature  
change. Temperature coefficients are added to the  
typical values of a specification to see the effect of  
temperature drift.  
0.8 mA to 60 mA.  
V
OH2  
was added.  
Pins were clarified in the I spec.  
LI  
The I  
TBD to 1.5V.  
test condition (V ) was changed from  
IN  
TL  
Terminal Based CharacteristicÐAn actual charac-  
teristic which has been rotated and translated to re-  
move zero offset and full scale error.  
The I Power Down spec changed from 100 mA  
CC  
to 175 mA.  
6. The load capacitance for all timing tables was  
changed to 50 pF.  
V
RejectionÐAttenuation of noise on the V  
CC  
line to the A/D converter.  
CC  
7. In the Host Interface Timing Section TWD  
changed from 0 ns to 5 ns.  
Zero OffsetÐThe difference between the expected  
and actual input voltage corresponding to the first  
code transition.  
8. The External Memory Timing table changed as  
follows:  
Spec.  
TLLIV  
TPLIV  
Old  
New  
4TCLCL-50  
3TCLCL-50  
TCLCL-15  
5TCLCL-50  
5TCLCL-50  
8TCLCL-50  
9TCLCL-50  
9TCLCL-50  
5TCLCL-50  
4TCLCL-100  
3TCLCL-105  
TCLCL-25  
DATA SHEET REVISION SUMMARY  
TPXIZ  
TAVIV  
TRLDV  
TLLDV  
TAVDV  
TMVDV  
TMVIV  
The following differences exist between this data  
sheet (272271-002) and the previous version  
(272271-001).  
5TCLCL-105  
5TCLCL-100  
8TCLCL-100  
9TCLCL-100  
Removed  
1. Data sheet status changed from ‘‘Product Pre-  
view’’ to ‘‘Advance Information’’.  
2. Title page item number three describing the glob-  
al interrupt enable change was removed.  
Removed  
3. Title page item number two was corrected to read  
‘‘ . . . was added in configuration register 1.’’  
9. In Figures 5 and 7 the MEMCSL waveforms were  
removed.  
4. In the 8XC51SL DC Characteristics section:  
10. Clarification was added in the Programming Al-  
gorithm section.  
The  
b
V
test condition (I  
b
)
OH  
changed from  
OH  
0.8 mA to 60 mA.  
11. In the A/D Converter Specifications section the  
minimum resolution was changed from 256 lev-  
els to 255 levels.  
The V test condition (I  
OH1  
4.0 mA to 2.0 mA.  
) changed from  
OH  
b
b
12. The Data Sheet Revision Summary was added.  
V
OH2  
was added.  
The XTAL1 and EAL pins were added to the I  
spec.  
LI  
23  
厂商 型号 描述 页数 下载

INTEL

8XC151SA 高性能CHMOS微控制器[ HIGH-PERFORMANCE CHMOS MICROCONTROLLER ] 33 页

INTEL

8XC151SB 高性能CHMOS微控制器[ HIGH-PERFORMANCE CHMOS MICROCONTROLLER ] 33 页

INTEL

8XC152JA 通用通信控制器8位微控制器[ UNIVERSAL COMMUNICATION CONTROLLER 8-BIT MICROCONTROLLER ] 17 页

INTEL

8XC152JB 通用通信控制器8位微控制器[ UNIVERSAL COMMUNICATION CONTROLLER 8-BIT MICROCONTROLLER ] 17 页

INTEL

8XC152JC 通用通信控制器8位微控制器[ UNIVERSAL COMMUNICATION CONTROLLER 8-BIT MICROCONTROLLER ] 17 页

INTEL

8XC152JD 通用通信控制器8位微控制器[ UNIVERSAL COMMUNICATION CONTROLLER 8-BIT MICROCONTROLLER ] 17 页

INTEL

8XC196JQ 商业/ EXPRESS CHMOS单片机[ COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER ] 25 页

INTEL

8XC196JR 商业/ EXPRESS CHMOS单片机[ COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER ] 25 页

INTEL

8XC196KB 先进的16位微控制器CHMOS无ROM或ROM[ ADVANCED 16-BIT CHMOS MICROCONTROLLER ROMless OR ROM ] 17 页

INTEL

8XC196KB16 商业/ EXPRESS CHMOS单片机[ COMMERCIAL/EXPRESS CHMOS MICROCONTROLLER ] 22 页

PDF索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

IC型号索引:

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

Copyright 2024 gkzhan.com Al Rights Reserved 京ICP备06008810号-21 京

0.156650s